Irvine Ranch Water District
Sewer System Management Plan

June 2018
Table of Contents

Chapter 1  Introduction ........................................................................................................ 1-1
1.1  Organization of SSMP ............................................................................................ 1-1
1.2  System Overview .................................................................................................... 1-1
1.3  Definitions, Acronyms, and Abbreviations ......................................................... 1-4

Chapter 2  Prohibitions and Provisions ...................................................................... 2-1
2.1  Prohibitions ........................................................................................................... 2-1
2.2  Provisions ............................................................................................................... 2-1

Chapter 3  Goal ............................................................................................................. 3-1
3.1  Purpose .................................................................................................................. 3-1
3.2  Goal ....................................................................................................................... 3-1
3.3  Objectives for Operation and Maintenance of the Sewer System .................. 3-1

Chapter 4  Organization .............................................................................................. 4-1
4.1  Regulatory Requirements ..................................................................................... 4-1
4.2  Authorized Representative .................................................................................. 4-1
4.3  Responsibility for SSMP Development, Implementation, and Maintenance .... 4-1
4.4  SSO Reporting Chain of Communication ............................................................. 4-6

Chapter 5  Legal Authority .......................................................................................... 5-1
5.1  Regulatory Requirements ..................................................................................... 5-1
5.2  Legal Authorities .................................................................................................. 5-1
5.3  Agreements with Other Agencies ......................................................................... 5-2

Chapter 6  Operations and Maintenance Program ..................................................... 6-1
6.1  Regulatory Requirements ..................................................................................... 6-1
6.2  Collection System Mapping ................................................................................. 6-1
6.3  Preventive Maintenance ....................................................................................... 6-2
6.4  Rehabilitation and Replacement Plan .................................................................. 6-9
6.5  Training Program .................................................................................................. 6-17
6.6  Equipment and Replacement Parts Inventory .................................................... 6-18

Chapter 7  Design and Performance Provisions .......................................................... 7-1
7.1  Regulatory Requirements ..................................................................................... 7-1
7.2  Design and Construction Standards ..................................................................... 7-1
7.3  Inspection and Testing Standards ......................................................................... 7-2

Chapter 8  Overflow Emergency Response Plan ...................................................... 8-1
8.1  Regulatory Requirements ..................................................................................... 8-1
8.2  Goals of the Overflow Emergency Response Plan ............................................. 8-1
8.3  SSO Detection ....................................................................................................... 8-2
8.4  SSO Response Procedures ................................................................................... 8-3
8.5  Traffic and Crowd Control ................................................................................... 8-10
8.6  Public Notification ................................................................................................. 8-10
8.7  SSO Event Investigation ....................................................................................... 8-11
8.8  SSO Categories ..................................................................................................... 8-11
8.9  SSO Documentation and Reporting ..................................................................... 8-12
8.10 External SSO Reporting Procedures ..................................................................... 8-12
8.11 Equipment ............................................................................................................. 8-14
8.12 SSO Response Training ....................................................................................... 8-14
8.13 Contractors Working on District Sewer Facilities ................................................ 8-15

June 2018
**Chapter 9  FOG Control Program** ................................................................. 9-1
9.1 Regulatory Requirements ................................................................. 9-1
9.2 Nature and Extent of FOG Problem ................................................... 9-1
9.3 Legal Authority to Support FOG Source Control Program ................... 9-2
9.4 FOG Pretreatment Requirements ....................................................... 9-3
9.5 FOG Preventive Maintenance .......................................................... 9-5
9.6 FOG Source Control ...................................................................... 9-5
9.7 FOG Control Program Enforcement .................................................. 9-6
9.8 FOG Program Staffing ..................................................................... 9-7
9.9 FOG Disposal Facilities ................................................................... 9-8
9.10 FOG Public Education Outreach ...................................................... 9-9
9.11 Industrial Discharger FOG Control ................................................... 9-9

**Chapter 10  System Evaluation and Capacity Assurance Plan** ............... 10-1
10.1 Regulatory Requirements ................................................................. 10-1
10.2 Background .................................................................................... 10-1
10.3 Capacity Evaluation ........................................................................ 10-1
10.4 Design and Performance Criteria ..................................................... 10-3
10.5 Reliability and Redundancy .............................................................. 10-5
10.6 Capacity Enhancement, Reliability, and Redundancy Measures and Schedule .................................................................................. 10-6

**Chapter 11  Monitoring, Measurement, and Program Modifications** ........ 11-1
11.1 Regulatory Requirements ................................................................. 11-1
11.2 Performance Measures .................................................................... 11-1
11.3 Performance Monitoring and Program Changes .................................. 11-1
11.4 SSMP Updates ................................................................................ 11-2

**Chapter 12  SSMP Program Audits** ...................................................... 12-1
12.1 Regulatory Requirements ................................................................. 12-1
12.2 SSMP Audits .................................................................................. 12-1

**Chapter 13  Communication Program** ................................................. 13-1
13.1 Regulatory Requirements for the Communication Program ............... 13-1
13.2 Communication with Public ............................................................. 13-1
13.3 Communication with Tributary and/or Satellite Systems .................... 13-3
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>SSMP Development and Completion Schedule</td>
<td>2-4</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Positions Responsible for SSMP Development and Implementation</td>
<td>4-3</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Narrative Explanation of SSMP Roles of Various Positions</td>
<td>4-4</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Summary of IRWD Legal Authorities</td>
<td>5-4</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Advancements in Manufacture of Vitrified Clay Pipe Prior to Construction of IRWD Sewer System</td>
<td>6-10</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>Maximum Structural Defects Observed in Pipe Segments in Since 2013</td>
<td>6-12</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>FY14 – FY23 10-Year Pipeline Capital Improvement Program Funding</td>
<td>6-16</td>
</tr>
<tr>
<td>Table 6-4</td>
<td>Training Resources (Conferences, Seminars, and Courses)</td>
<td>6-17</td>
</tr>
<tr>
<td>Table 6-5</td>
<td>Training Resources (Materials)</td>
<td>6-17</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Sewer Standard Drawings</td>
<td>7-2</td>
</tr>
<tr>
<td>Table 8-1</td>
<td>Standby List Positions and Roles</td>
<td>8-3</td>
</tr>
<tr>
<td>Table 9-1</td>
<td>Summary of IRWD’s FOG Legal Authorities</td>
<td>9-2</td>
</tr>
<tr>
<td>Table 9-2</td>
<td>Types of FOG Source Control Inspection Performed by IRWD</td>
<td>9-6</td>
</tr>
<tr>
<td>Table 9-3</td>
<td>Levels of FSE Enforcement Response</td>
<td>9-7</td>
</tr>
<tr>
<td>Table 9-4</td>
<td>Grease Hauling Companies Serving Orange County</td>
<td>9-8</td>
</tr>
<tr>
<td>Table 9-5</td>
<td>Grease Rendering/Drop Off Points for Irvine Area</td>
<td>9-9</td>
</tr>
<tr>
<td>Table 10-1</td>
<td>d/D Performance Criteria for Gravity Sewer Pipes</td>
<td>10-4</td>
</tr>
<tr>
<td>Table 11-1</td>
<td>Performance Metrics for Monitoring and Measurement</td>
<td>11-2</td>
</tr>
<tr>
<td>Table 12-1</td>
<td>SSMP Program Audit Schedule</td>
<td>12-1</td>
</tr>
<tr>
<td>Table 13-1</td>
<td>Strategies for Communication with Public on SSMP Development, Implementation and Performance</td>
<td>13-2</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>IRWD Sewer System and Service Area</td>
<td>1-3</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Organization and Roles of IRWD Staff Responsible for Development and Implementation of the SSMP</td>
<td>4-2</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>IRWD Sewer Pipeline Installation By Decade</td>
<td>6-5</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>IRWD System-Wide Sewer Cleaning Plan</td>
<td>6-6</td>
</tr>
<tr>
<td>Figure 6-3</td>
<td>IRWD Sewer Quarterly Enhanced Maintenance Area Cleaning</td>
<td>6-7</td>
</tr>
<tr>
<td>Figure 6-4</td>
<td>Sewer Cleaning Scheduling Flowchart</td>
<td>6-8</td>
</tr>
<tr>
<td>Figure 6-5</td>
<td>Pipe Material by Year of Installation</td>
<td>6-9</td>
</tr>
<tr>
<td>Figure 6-6</td>
<td>Pipe Material by Sewer System Age</td>
<td>6-10</td>
</tr>
<tr>
<td>Figure 6-7</td>
<td>Sewer Pipelines Inspected</td>
<td>6-13</td>
</tr>
<tr>
<td>Figure 6-8</td>
<td>Maximum Structural Defect Grade for Pipes Inspected</td>
<td>6-14</td>
</tr>
<tr>
<td>Figure 6-9</td>
<td>Sewer Pipeline Rehabilitation and Repair</td>
<td>6-15</td>
</tr>
<tr>
<td>Figure 8-1</td>
<td>SSO Response Procedure Flow Chart</td>
<td>8-5</td>
</tr>
<tr>
<td>Figure 8-2</td>
<td>SSO Response Flow Chart for District-Owned Sewer SSOs</td>
<td>8-6</td>
</tr>
<tr>
<td>Figure 10-1</td>
<td>Residential Diurnal Curve</td>
<td>10-2</td>
</tr>
<tr>
<td>Figure 10-2</td>
<td>Commercial Diurnal Curve</td>
<td>10-3</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

This Sewer System Management Plan (SSMP) has been prepared in compliance with the State Water Resources Control Board (SWRCB) Order 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems (WDR). The SSMP also complies with Monitoring and Reporting Program (MRP) Order No. WQ 2013-0058-EXEC, along with all future revisions to the monitoring and reporting program, included by reference to the WDR. The WDR prohibits sanitary sewer overflows (SSOs) and requires reporting of SSOs using the statewide electronic reporting system. The WDR and MRP Order No. WQ 2013-0058-EXEC are included in Appendix A.

1.1 Organization of SSMP

The structure of this document follows the section numbering and nomenclature specified in the WDR. The SSMP includes thirteen sections, as follows:

1. Introduction
3. Goal
4. Organization
5. Legal Authority
6. Operation and Maintenance Program
8. Overflow Emergency Response Plan
9. Fats, Oils and Grease (FOG) Control Program
10. System Evaluation and Capacity Assurance Plan
11. Monitoring, Measurement, and Program Modifications
12. SSMP Program Audits
13. Communication Program

1.2 System Overview

Irvine Ranch Water District (IRWD) is a California Special District formed in 1961 and incorporated under the California water code. IRWD owns a sanitary sewer system with approximately 102,000 sewer connections serving 390,000 customers and operates and maintains 1,100 miles of sanitary sewer mains and 12 miles of force mains spanning 181 square miles (84,000 acres) of service area in Orange County. The wastewater collection system serves the City of Irvine, Lake Forest, parts of Tustin, Newport Beach, Foothill Ranch, Costa Mesa, and unincorporated areas of Orange County. There is a small amount of wastewater generated in the City of Newport Beach and Irvine that is collected by trunk sewers owned, operated, and maintained by the IRWD, then discharged into sewers owned and maintained by the Orange County Sanitation District (OCSD).

IRWD’s sewer mains range in size from 4 to 60 inches in diameter as shown in Figure 1-1. The sewer main material is nearly exclusively vitrified clay pipe (VCP) and polyvinyl chloride (PVC), with other miscellaneous materials. Drainage patterns in the wastewater collection system are influenced by the
physical geography of the service area and result in five separate wastewater collection systems within the IRWD service area which are covered by the Sewer System Management Plan.
Figure 1-1: IRWD Sewer System and Service Area
1.3 Definitions, Acronyms, and Abbreviations

**Best Management Practices (BMP)** - Refers to the procedures employed in commercial kitchens to minimize the quantity of grease that is discharged to the sanitary sewer system. Examples include scraping food scraps into the garbage can and dry wiping dishes and utensils prior to washing.

**California Integrated Water Quality System (CIWQS)** - Refers to the State Water Resources Control Board online electronic reporting system that is used to report SSOs, certify completion of the SSMP, and provide information on the sanitary sewer system.

**Capital Improvement Program (CIP)** - Refers to the document that identifies planned capital improvements to the District’s wastewater collection system.

**Closed Circuit Television (CCTV)** - Refers to the process and equipment that is used to internally inspect the condition of gravity sewers.

**Collection System** – See Wastewater Collection System

**Computerized Maintenance Management System (CMMS)** - Refers to software utilized to manage maintenance and condition assessment data including the production of work orders and the recording of work completed.

**District** - Refers to the Irvine Ranch Water District.

**Enhanced Maintenance Area** - A gravity sewer identified as requiring frequent preventive maintenance to reduce the likelihood of SSOs.

**Fats, Oils, and Grease (FOG)** - Refers to fats, oils, and grease typically associated with food preparation and cooking activities that can cause blockages in the sanitary sewer system.

**Fiscal Year (FY)**. IRWD’s fiscal year starts July 1 and ends the following year on June 30.

**Food Service Establishment (FSE)** - Refers to commercial or industrial facilities where food is handled/prepared/served that discharge to the wastewater collection system.

**Full-time Equivalent (FTE)** - Refers to the equivalent of 2,080 paid labor hours per year by a regular, temporary, or contract employee.

**Geographical Information System (GIS)** - Refers to the District’s system that it uses to capture, store, analyze, and manage geospatial data associated with the District’s wastewater collection system assets.

**Grease Removal Equipment (GRD)** - Refers to grease traps or grease interceptors that are installed to remove FOG from the wastewater flow at food service establishments.

**Infiltration/Inflow (I/I)** - Refers to water that enters the wastewater collection system from stormwater and groundwater that increases the quantity of flow. Infiltration enters through defects in the wastewater collection system after flowing through the soil. Inflow enters the sanitary sewer without flowing through the soil.

**Lateral Connection** – The point of connection of the customer’s upper lateral with the lower lateral of the District.

**Lower Lateral** – The District’s facility between its collection system and the lateral connection, which is normally the exterior boundary of the easement or the street or access road right-of-way.

**Legally Responsible Official (LRO)** - Refers to the individual who has the authority to certify reports and other actions that are submitted through the Online SSO Reporting System.
**Manhole (MH)** - Refers to an engineered structure that is intended to provide access to a sanitary sewer for maintenance and inspection.

**Monitoring and Reporting Program (MRP)** - Refers to the State Water Resources Control Board Monitoring and Reporting Program No. 2006-0003-DWQ, including all future revisions.

**National Pollution Discharge Elimination System (NPDES)**

**OCSD** – Orange County Sanitation District

**Online SSO Reporting System** - Refers to the California Integrated Water Quality System (CIWQS).

**Operations and Maintenance (O&M)**

**Overflow Emergency Response Plan (OERP)**

**Preventive Maintenance (PM)** - Refers to maintenance activities intended to prevent failures of the wastewater collection system facilities (e.g. cleaning, CCTV, inspection).

**Private Lateral Sewage Discharges (PLSD)** - Sewage discharges that are caused by blockages or other problems within the privately-owned portion of a sewer service lateral.

**Sanitary Sewer Overflow (SSO)** - Any overflow, spill, release, discharge or diversion of untreated or partially treated wastewater from a sanitary sewer system. SSOs include:

(i) Overflows or releases of untreated or partially treated wastewater that reach waters of the United States;

(ii) Overflows or releases of untreated or partially treated wastewater that do not reach waters of the United States; and

(iii) Wastewater backups into buildings and on private property that are caused by blockages or flow conditions within the publicly owned portion of a sanitary sewer system.

**Sewer System** - See Wastewater Collection System.

**Sewer System Management Plan (SSMP)**

**State Water Resources Control Board (SWRCB)** - State Water Resources Control Board and staff responsible for protecting the State’s water resources.

**Supervisory Control and Data Acquisition (SCADA)** - Refers to an electronic system that is used to monitor lift station performance and to initiate alarms when monitored parameters exceed pre-set limits.

**Upper Lateral** – The pipeline from the lateral connection to the building or improvements of the applicant, owner, or customer.

**Vitrified Clay Pipe (VCP)**


**Wastewater Collection System** - Refers to the portion of the sanitary sewer facilities owned and operated by the Irvine Ranch Water District.
Chapter 2  Prohibitions and Provisions

This chapter describes the sewage discharge prohibitions and provisions as stated in the WDR.

2.1 Prohibitions

To meet the provisions contained in Division 7 of the California Water Code and regulations adopted thereunder, IRWD is required to comply with the following prohibitions:

- Any SSO that results in a discharge of untreated or partially treated wastewater to waters of the United States is prohibited, and
- Any SSO that results in a discharge of untreated or partially treated wastewater that creates a nuisance as defined in California Water Code Section 13050(m) is prohibited.

2.2 Provisions

As stated in the Order, IRWD agrees to meet the following provisions:

1. IRWD must comply with all conditions in the Order. Any noncompliance with the Order constitutes a violation of the California Water Code and is grounds for enforcement action.

2. Nothing in the general WDR shall be:
   (i) Interpreted or applied in a manner inconsistent with the Federal Clean Water Act, or supersede a more specific or more stringent state or federal requirement in an existing permit, regulation, or administrative/judicial order or Consent Decree;
   (ii) Interpreted or applied to authorize a SSO that is illegal under either the Clean Water Act, an applicable Basin Plan prohibition or water quality standard, or the California Water Code;
   (iii) Interpreted or applied to prohibit a Regional Water Board from issuing an individual National Pollutant Discharge Elimination System permit or WDR, superseding this general WDR, for a sanitary sewer system, authorized under the Clean Water Act or California Water Code; or
   (iv) Interpreted or applied to supersede any more specific or more stringent WDR or enforcement order issued by a Regional Water Board.

3. IRWD shall take all feasible steps to eliminate SSOs. In the event that an SSO does occur, IRWD shall take all feasible steps to contain and mitigate the impacts of an SSO.

4. In the event of an SSO, IRWD shall take all feasible steps to prevent untreated or partially treated wastewater from discharging from storm drains into flood control channels or waters of the United States by blocking the storm drainage system and by removing the wastewater from the storm drains.

5. IRWD shall report SSOs in accordance with Section G of the general WDR.

6. IRWD understands that in any enforcement action, the State and/or Regional Water Boards will consider the appropriate factors under the duly adopted State Water Board Enforcement Policy,
and, consistent with this policy, must consider IRWD’s efforts to contain, control, and mitigate SSOs when considering the California Water Code 13327 factors. In assessing these factors, the State and/or Regional Water Boards will also consider additional factors listed in Provision 6 of the WDR.

7. When an SSO occurs, IRWD shall take all feasible steps and necessary remedial actions to 1) control or limit the volume of untreated or partially treated wastewater discharged, 2) terminate the discharge, and 3) recover as much of the wastewater discharged as possible for proper disposal, including any wash down water.

IRWD shall implement all remedial actions to the extent they may be applicable to the discharge and not inconsistent with an emergency response plan, including the following:

(i) Interception and rerouting of untreated or partially treated wastewater flows around the wastewater line failure.
(ii) Vacuum truck recovery of sanitary sewer overflows and washdown water.
(iii) Cleanup of SSO-related debris at the overflow site.
(iv) System modifications to prevent another SSO at the same location.
(v) Adequate sampling to determine the nature and impact of the release.
(vi) Adequate public notification to protect the public from exposure to the SSO.

8. IRWD shall properly manage, operate, and maintain all parts of the sanitary sewer it owns and operates, and shall ensure that the system operators (including employees, contractors, or other agents) are adequately trained and possess adequate knowledge, skills, and abilities.

9. IRWD shall allocate adequate resources for the operation, maintenance, and repair of its sanitary sewer system, by establishing a proper rate structure, accounting mechanisms, and auditing procedures to ensure an adequate measure of revenues and expenditures. These procedures must be in compliance with applicable laws and regulations and comply with generally accepted accounting practices.

10. IRWD shall provide adequate capacity to convey base flows and peak flows, including flows related to wet weather events. Capacity shall meet or exceed the design criteria as defined in IRWD’s System Evaluation and Capacity Assurance Plan for all parts of the sanitary sewer system owned or operated by the IRWD.

11. IRWD shall develop and implement a written SSMP and make it available to the State and/or Regional Water Board upon request. A copy of this document must be publically available at the Enrollee’s office and/or available on the internet. This SSMP must be approved by the Enrollee’s governing board at a public meeting.

12. In accordance with the California Business and Professions Code sections 6735, 7835, and 7835.1, all engineering and geologic evaluations and judgments shall be performed by or under the direction of registered professionals competent and proficient in the fields pertinent to the required activities. Specific elements of the SSMP that require professional evaluation and judgments shall be prepared by or under the direction of appropriately qualified professionals, and shall bear the professional(s)’ signature and stamp.
13. The elements of the SSMP include:

(i) Goal
(ii) Organization
(iii) Legal Authority
(iv) Operations and Maintenance Program
(v) Design and Performance Provisions
(vi) Overflow Emergency Response Plan
(vii) FOG Control Program
(viii) System Evaluation and Capacity Assurance Plan
(ix) Monitoring, Measurement, and Program Modifications
(x) SSMP Program Audits
(xi) Communication Program

14. The SSMP must be updated every five (5) years, and must include any significant program changes. Re-certification by the governing board of IRWD is required when significant updates to the SSMP are made. To complete the re-certification process, IRWD shall enter the data in the Online SSO Database and mail the form to the State Water Board, as described in Section D.14 of the Order.

IRWD has met all the mandatory elements of the SSMP as specified in the SSMP Development and Completion Schedule in Table 2-1.
## Table 2-1: SSMP Development and Completion Schedule

<table>
<thead>
<tr>
<th>SSMP Task</th>
<th>Milestone Due/Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMP Development Plan and Schedule</td>
<td>February 2018</td>
</tr>
<tr>
<td>Goal and Organization Structure</td>
<td>February 2018</td>
</tr>
<tr>
<td>Overflow Emergency Response Plan</td>
<td>February 2018</td>
</tr>
<tr>
<td>Legal Authority</td>
<td>February 2018</td>
</tr>
<tr>
<td>Operation and Maintenance Program</td>
<td>February 2018</td>
</tr>
<tr>
<td>Fats, Oils, and Grease Control Program</td>
<td>February 2018</td>
</tr>
<tr>
<td>Design and Performance Provisions</td>
<td>February 2018</td>
</tr>
<tr>
<td>System Evaluation and Capacity Assurance Plan</td>
<td>February 2018</td>
</tr>
<tr>
<td>Final SSMP, addressing all SSMP requirements</td>
<td>April 2018</td>
</tr>
<tr>
<td>SSMP Update</td>
<td>June 2018</td>
</tr>
<tr>
<td>Present to Engineering &amp; Operations Committee</td>
<td>August 2018</td>
</tr>
<tr>
<td>Board Approved &amp; Certified SSMP</td>
<td>August 2018</td>
</tr>
</tbody>
</table>
Chapter 3  Goal

This chapter describes the goal of this SSMP document.

3.1 Purpose

The purpose of the Order is to prevent SSOs. IRWD has prepared and implemented this SSMP to support this purpose. IRWD will monitor the effectiveness of this SSMP and the SSMP implementation to determine if deficiencies exist in the SSMP or SSMP implementation and will take appropriate steps to correct them.

3.2 Goal

The goal of the SSMP is to provide a plan and schedule to properly manage, operate, and maintain all parts of the IRWD sanitary sewer system to prevent SSOs and mitigate any SSOs that do occur.

A copy of the Order and the certified SSMP is available to personnel operating and maintaining the IRWD sanitary sewer system. Pursuant to California Water Code Section 13267(b), IRWD will also comply with the SSO Monitoring and Reporting Program No. 2006-0003-DWQ” as amended by Order No. WQ 2013-0058-EXEC, and all future revisions, included by reference in the Order. A copy of the WDR and MRP Order No. WQ 2013-0058-EXEC amending the original MRP is included in Appendix A of this SSMP.

3.3 Objectives for Operation and Maintenance of the Sewer System

The District aims to operate and maintain the sewer collection system in a safe, efficient, reliable and cost effective manner to prevent spills and interruptions in an environmentally safe manner with the highest customer satisfaction. IRWD has set the following objectives for operation and maintenance of the wastewater collection system:

(a) Maintain the collection system in an efficient and reliable manner to prevent problems for IRWD customers.

(b) Maintain the collection system to prevent any sewer system overflows (SSO) from occurring.

(c) Clean the entire collection system consisting of 21-inch diameter pipelines and under on a 24-month cycle.

(d) Improve collection system reliability by identifying and mitigating areas with an accumulation Fats, Oils and Grease (FOG).

(e) Maintain sewer collection system reliability by identifying and mitigating areas with excessive root growth.

(f) Monitor and inspect all lift stations within the collection system to ensure efficient and reliable operation.

(g) Monitor H₂S levels throughout the collection system to identify sources for mitigation, and to ensure efficient and effective H₂S control.

(h) Monitor sewer flows throughout the collection system to ensure sufficient capacity.

(i) Conduct CCTV inspections of at least 10 percent of all existing pipelines on an annual basis.

(j) Identify sewer collection system deficiencies using CCTV inspection equipment and schedule infrastructure repairs as needed.
(k) Provide our Engineering Department with timely and accurate CCTV inspections of all existing and newly constructed sewer pipelines.

(l) Identify areas within the collection system requiring the application of vector control chemicals.

(m) Provide our employees with training necessary to fulfill the goals of IRWD succession planning program.

(n) Provide our employees a safe work environment and recognition for their contributions.
Chapter 4 Organization

This section identifies the Authorized Representative to meet the SWRCB requirements for completing and certifying spill reports and the implementation and development of the SSMP. This section also includes IRWD’s staff responsible for managing and maintaining the wastewater collection system and the responders to SSO events.

4.1 Regulatory Requirements

The WDR requirements for the Organization section of the SSMP are listed below:

(a) The name of the responsible or Authorized Representative.

(b) The names and telephone numbers for management, administrative and maintenance positions responsible for implementing specific measures in the SSMP program. The SSMP must identify lines of authority through an organization chart or similar document with a narrative explanation; and

(c) The chain of communication for reporting SSOs, from receipt of a complaint or other information, including the person responsible for reporting SSOs to the State and Regional Water Board and other agencies if applicable (such as County Health Officer, County Environmental Health Agency, Regional Water Board, and/or State Office of Emergency Services (OES)).

4.2 Authorized Representative

IRWD’s Authorized Representative/Legally Responsible Official (LRO) is the Executive Director of Operations, or his/her designee. In this capacity, he/she is responsible for overseeing the SSMP, as well as certifying the SSOs to the State via the CIWQS electronic reporting system.

The Authorized Representative has delegated the field reporting to IRWD’s Collection Systems Manager and/or Collection Systems Supervisor as sewer overflow response staff. As the first responders, they are responsible for documenting the conditions associated with the spill and reporting to Regulatory Compliance staff. Regulatory Compliance staff is responsible for the on-line reporting in CIWQS. The Executive Director of Operations, or his/her designee, is responsible for certifying the submitted reports in the electronic reporting system. The Standby personnel staff and Regulatory Compliance are also responsible for verbal notification to the various regulatory agencies including State and Regional Boards, California Emergency Management Agency, and Orange County Health Department.

4.3 Responsibility for SSMP Development, Implementation, and Maintenance

The Executive Director of Operations, or his/her designee, is responsible for the overall development, implementation, and maintenance of the SSMP. The Executive Director of Operations in turn utilizes Collection Systems and other District staff to carry out the various tasks under the SSMP. IRWD’s Collection Systems personnel are responsible for the operation and maintenance of the wastewater collection system, with assistance from Electrical Services and Mechanical Services, as shown in Figure 4-1. Table 4-1 lists the positions responsible for the SSMP. Table 4-2 provides a narrative explanation of the roles of various positions with the District’s organization with implementing elements of the SSMP. The names and telephone numbers for management, administrative, and maintenance positions listed in Table 4-1 is included in Appendix B.
Figure 4-1: Organization and Roles of IRWD Staff Responsible for Development and Implementation of the SSMP

IRWD Board of Directors

IRWD General Manager

Operations Executive Director

Legally Responsible Official

Engineering and Planning Executive Director

Water Resources and Policy Executive Director

Public Affairs Director

Finance Executive Director

Finance/Treasurer/Controller/Manager/Director

Administration Services Director

Water Operations Director

Field Services Manager

Construction Services Manager

Electricity & Information Services Manager

Mechanical Services Manager

IRWD Staff

Maintenance Director

Rolling Operations Director

Reporting Operations Director

Legally Responsible Official

Collection Systems Manager

Water Quality Manager

Capital Projects Principal Engineer

Operations Support Principal Engineer

Planning and Technical Services Principal Engineer

Regulatory Compliance Manager

Customer Service Staff

Water Operations Staff

Field Services Staff

Construction & Repair Staff

Electrical Maintenance Staff

Mechanical Maintenance Staff

Collection Systems Staff

Collection Systems CCTV Tech

Collection Systems CCTV Tech II

Collection Systems CCTV Tech III

Financial planning, budgeting, external/ internal reporting, O&M and Capital Improvement Program budgeting and review,

Preliminary, O&M and Capital Improvement Program Review, programming, and delay analysis

Standby Primary Secondary Responders

Standby Primary Secondary Responders

Sewer pipeline and manhole repairs

Pump station electrical system preventative

Pump station mechanical system preventative

Sanitary sewer maintenance response

Collection system CCTV inspection and condition assessment

Collection system CCTV inspection and condition assessment

Sewer system CCTV inspection and condition assessment

Collection system CCTV inspection and condition assessment

CCTV laboratory to process any samples collected.

Large collection system capital improvement projects

Wet weather collection system capital improvement projects

Sewer capacity and master planning for replacement projects

Collection system rehabilitation and replacement planning

Public communications

Public communications

Regulatory compliance

Regulatory compliance

Planning and Technical Services Staff Engineering Staff

Planning and Technical Services Staff Engineering Staff

Public Affairs Staff

Public Affairs Staff

Development and Implementation of One or More Elements of SSMP

SSMP Role of Organizational Unit

June 2018

IRvine Ranch Water District

May 2018
<table>
<thead>
<tr>
<th>WDR Reference</th>
<th>SSMP Element/Measure</th>
<th>Responsible Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.13</td>
<td>Overall SSMP Development and Implementation</td>
<td>Executive Director of Operations</td>
</tr>
<tr>
<td>D. 13(i)</td>
<td>Goal</td>
<td>Director of Recycling Operations</td>
</tr>
<tr>
<td>D.13(ii)</td>
<td>Organization</td>
<td>Director of Recycling Operations</td>
</tr>
<tr>
<td>D.13(iii)</td>
<td>Legal Authority</td>
<td>Director of Recycling Operations</td>
</tr>
<tr>
<td>D.13(iv)(a)</td>
<td>Operations and Maintenance Program – Mapping</td>
<td>Planning and Technical Services, Principal Engineer</td>
</tr>
<tr>
<td>D.13(iv)(b)</td>
<td>Operations and Maintenance Program – Sewer Pipeline and Manhole Preventive and Routine Maintenance</td>
<td>Collection Systems Manager</td>
</tr>
<tr>
<td>D.13(iv)(b)</td>
<td>Operations and Maintenance Program – Lift Station Mechanical and Electrical Preventive and Routine Maintenance</td>
<td>Director of Maintenance</td>
</tr>
<tr>
<td>D.13(iv)(c)</td>
<td>Operations and Maintenance Program – System Inspection</td>
<td>Collection Systems Manager</td>
</tr>
<tr>
<td>D.13(iv)(c)</td>
<td>Operations and Maintenance Program – Condition Assessment; Rehabilitation and Replacement Program</td>
<td>Executive of Director Engineering and Planning</td>
</tr>
<tr>
<td>D.13(iv)(c)</td>
<td>Operations and Maintenance Program – Capital Program Funding</td>
<td>Executive of Director Engineering and Planning</td>
</tr>
<tr>
<td>D.13(iv)(d)</td>
<td>Operations and Maintenance Program – Training</td>
<td>Collection Systems Manager</td>
</tr>
<tr>
<td>D.13(iv)(e)</td>
<td>Operations and Maintenance – Critical and Replacement Part inventory</td>
<td>Mechanical Services Manager</td>
</tr>
<tr>
<td>D.13(v)</td>
<td>Design and Performance Provisions</td>
<td>Planning and Technical Services, Principal Engineer</td>
</tr>
<tr>
<td>D.13(vii)</td>
<td>Overflow Emergency Response Plan</td>
<td>Collection Systems Manager</td>
</tr>
<tr>
<td>D.13(viii)</td>
<td>Fats, Oils, and Grease Control Program</td>
<td>Regulatory Compliance Manager</td>
</tr>
<tr>
<td>D.13(viii)</td>
<td>System Evaluation and Capacity Assurance Plan</td>
<td>Planning and Technical Services, Principal Engineer</td>
</tr>
<tr>
<td>D.13(ix)</td>
<td>Monitoring, Measurement, and Program Modifications</td>
<td>Director of Recycling Operations</td>
</tr>
<tr>
<td>D.13(x)</td>
<td>SSMP Program Audits</td>
<td>Director of Recycling Operations</td>
</tr>
<tr>
<td>D.13(xi)</td>
<td>Communication Program – Public education</td>
<td>Director of Public Affairs</td>
</tr>
<tr>
<td>D.13(xi)</td>
<td>Communication Program – Satellite agencies</td>
<td>Executive Director of Operations</td>
</tr>
</tbody>
</table>
### Table 4-2: Narrative Explanation of SSMP Roles of Various Positions

<table>
<thead>
<tr>
<th>Position</th>
<th>Narrative Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Services, Director</td>
<td>Responsible for overseeing customer service activities.</td>
</tr>
<tr>
<td>Controller</td>
<td>Responsible for financial planning, budgets, external/internal reporting, rate setting, O&amp;M and Capital Improvement Program funding.</td>
</tr>
<tr>
<td>Board of Directors</td>
<td>Responsible for hiring the General Manager and for assessing the overall direction and strategy of the District.</td>
</tr>
<tr>
<td>Capital Projects, Engineering Staff</td>
<td>Responsible for performing or managing design and construction services to implement capital projects.</td>
</tr>
<tr>
<td>Capital Projects, Principal Engineer</td>
<td>Manages Capital Projects engineering staff responsible for performing or managing design and construction services to implement capital projects.</td>
</tr>
<tr>
<td>Collection Systems CCTV Technician</td>
<td>Responsible for performing CCTV inspection of sewer pipelines.</td>
</tr>
<tr>
<td>Collection Systems Manager</td>
<td>Responsible for collection system operations, maintenance, and performance. Oversees emergency response, sewer cleaning, and sewer inspection activities.</td>
</tr>
<tr>
<td>Collection Systems O&amp;M Staff</td>
<td>Responsible for performing collection system emergency response and sewer cleaning activities.</td>
</tr>
<tr>
<td>Collection Systems Sr. CCTV Tech</td>
<td>Responsible for District’s CCTV inspection program and performing CCTV inspection of sewer pipelines.</td>
</tr>
<tr>
<td>Collection Systems Supervisors</td>
<td>Responsible for overseeing collection system emergency response and sewer cleaning activities.</td>
</tr>
<tr>
<td>Construction Services Manager</td>
<td>Responsible for managing staff that support sewer overflow emergency response activities. Responsible for overseeing sewer repair activities.</td>
</tr>
<tr>
<td>Construction Services Staff</td>
<td>Performs primary and secondary responder duties. Supports sewer overflow emergency response when needed. Responsible for performing sewer repair activities.</td>
</tr>
<tr>
<td>Customer Service Manager</td>
<td>Manages customer service staff responsible for receiving, documenting, and communicating customer calls to emergency response and O&amp;M staff.</td>
</tr>
<tr>
<td>Customer Service Staff</td>
<td>Responsible for receiving, documenting, and communicating customer calls to emergency response and O&amp;M staff.</td>
</tr>
<tr>
<td>Electrical and Instrumentation Manager</td>
<td>Responsible for preventive and corrective maintenance of electrical equipment at sewer pump stations.</td>
</tr>
<tr>
<td>Electrical and Instrumentation Staff</td>
<td>Performs preventive and corrective maintenance of electrical equipment at sewer pump stations.</td>
</tr>
<tr>
<td>Engineering and Planning, Executive Director</td>
<td>Responsible for overseeing capital project planning and implementation.</td>
</tr>
<tr>
<td>Finance and Administration, Executive Director</td>
<td>Manages staff responsible for receiving, documenting, and relaying customer calls within the District organization. Manages staff responsible for working with operations and engineering to determine financial requirements of organization; responsible for ensuring revenue stream and funding is in place to meet financial obligations for operations, maintenance, and capital improvements.</td>
</tr>
<tr>
<td>IRWD General Manager</td>
<td>Responsible for overseeing day-to-day operation of the District.</td>
</tr>
<tr>
<td>Director of Maintenance</td>
<td>Responsible for managing staff performing electrical and mechanical preventive and corrective maintenance at sewer pump stations.</td>
</tr>
<tr>
<td>Mechanical Services Manager</td>
<td>Responsible for preventive and corrective maintenance of mechanical equipment at sewer pump stations.</td>
</tr>
<tr>
<td>Position</td>
<td>Narrative Explanation</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Mechanical Services Staff</td>
<td>Performs preventive and corrective maintenance of mechanical equipment at sewer pump stations.</td>
</tr>
<tr>
<td>Operations Support, Engineering Staff</td>
<td>Responsible for managing design and construction of sewer rehabilitation projects.</td>
</tr>
<tr>
<td>Operations Support, Principal Engineer</td>
<td>Responsible for overseeing design and construction of sewer rehabilitation projects.</td>
</tr>
<tr>
<td>Operations, Executive Director</td>
<td>Serves as the legally responsible official for the District. Responsible for the overall development and implementation of the SSMP. Manages organizational units responsible for sewer overflow emergency response; collection system preventive maintenance, inspection and repair;</td>
</tr>
<tr>
<td>Planning and Technical Services, Engineering Staff</td>
<td>Performs system evaluation and capacity assurance planning. Performs sewer rehabilitation and replacement planning. Performs updates to collection system GIS databases.</td>
</tr>
<tr>
<td>Planning and Technical Services, Principal Engineer</td>
<td>Oversees system evaluation and capacity assurance planning activities. Oversees sewer rehabilitation and replacement planning.</td>
</tr>
<tr>
<td>Public Affairs Staff</td>
<td>Responsible for public communications, maintaining the District website, and implementing social media strategies.</td>
</tr>
<tr>
<td>Public Affairs, Director</td>
<td>Responsible for overseeing staff that are responsible for public communications, maintaining the District website, and implementing social media strategies.</td>
</tr>
<tr>
<td>Regulatory Compliance Manager</td>
<td>Responsible for managing the District’s Fats, Oils, and Grease Control Program. Responsible for overseeing staff who conduct sewer overflow notification and reporting, performing water quality sampling and testing when a sewer overflow impacts surface waters. Also responsible for managing the District’s Fats, Oils, and Grease Control Program.</td>
</tr>
<tr>
<td>Regulatory Compliance Staff</td>
<td>Performs water quality sampling and testing when a sewer overflow impacts surface waters.</td>
</tr>
<tr>
<td>Water Operations, Director</td>
<td>Responsible for managing staff that perform sewer repairs.</td>
</tr>
<tr>
<td>Recycling Operations, Director</td>
<td>Legally responsible official for the District. Responsible for the overall development and implementation of the SSMP.</td>
</tr>
<tr>
<td>Field Services Manager</td>
<td>Responsible for overseeing collection system repairs activities performed by District repair crews. Manages staff that perform Primary and Secondary Responder duties during standby.</td>
</tr>
<tr>
<td>Field Services Staff</td>
<td>Performs primary and secondary responder duties. Supports sewer overflow emergency response when needed.</td>
</tr>
<tr>
<td>Water Resources and Policy, Executive Director</td>
<td>Responsible for overseeing staff that are responsible for public communications, maintaining the District website, and implementing social media strategies. Also responsible for Regulatory Compliance Department staff.</td>
</tr>
</tbody>
</table>
4.4 SSO Reporting Chain of Communication

The SSO reporting chain of communication is illustrated in Figure 8-1 and Figure 8-2. Chapter 8 – Overflow Emergency Response Plan details the procedures and responsibilities during an SSO event, and the process is briefly summarized below.

Once a detection of an SSO is reported, either by the public or IRWD personnel, Collection Systems personnel will be dispatched to the scene by Customer Service Representatives during normal operating hours. If notification occurs after hours, the Standby personnel are notified by IRWD’s afterhours answering service.

No later than the next business day, a completed internal SSO Report Form should be forwarded to Regulatory Compliance staff. Any debriefings of the respondents to the SSO will occur at the Senior Management level. The internal SSO Reporting form is utilized to document the SSO event, communicate SSO event to all appropriate IRWD staff internally, enter all required information into the CIWQS on-line database, and to certify the SSO by the LRO.
Chapter 5  Legal Authority

This section of the SSMP discusses the IRWD’s legal authority to comply with the SSMP requirements, as provided in its Rules and Regulations and agreements with other agencies.

5.1 Regulatory Requirements

The requirements for the Legal Authority element of the SSMP are summarized below:

IRWD must demonstrate, through collection system use ordinances, service agreements, or other legally binding procedures, that it possesses the necessary legal authority to:

(a) Prevent illicit discharges into its wastewater collection system (examples may include infiltration and inflow (I/I), storm water, chemical dumping, unauthorized debris and cut roots, etc.);
(b) Require that sewers and connections be properly designed and constructed;
(c) Ensure access for maintenance, inspection, or repairs for portions of the lateral owned or maintained by the Public Agency;
(d) Limit the discharge of fats, oils, and grease and other debris that may cause blockages, and
(e) Enforce any violation of its sewer ordinances.

5.2 Legal Authorities

The District complies with the legal authority requirements of the WDR. The District’s legal authorities are contained in the following documents:

- Rules and Regulations for Water, Sewer, Recycled Water, and Natural Treatment System Service
- Regulations for the Discharge of Wastewater to Sewerage Facilities of the Irvine Ranch Water District that are in the South Orange County Wastewater Authority Service Area, Ordinance 2015-1
- Procedural Guidelines and General Design Requirements
- IRWD Standard Drawings and IRWD Standard Specifications for the sewer system
- Standard Specifications for Public Works Construction (Greenbook)

The primary source of IRWD’s legal authorities is Section 7 of the District’s Rules and Regulations, which is dedicated to “Use of District Sewerage Facilities”. The following sections provide a narrative of the District’s legal authorities for each of the requirements of the WDR. Table 5-1 provides a summary of the District’s legal authorities.

5.2.1 Prevention of Illicit Discharges

Measures prohibiting illicit discharges are included in Sections 7.3.1 to 7.3.12. The specific purpose of the Section is to prevent the discharge of any pollutant or any combination of pollutants into the sewers that would obstruct or damage the collection system, interfere with treatment, or threaten harm to human health or the environment. A full copy of the latest version of IRWD’s Rules and Regulations for Water, Sewer, Recycled Water, and Natural Treatment System Service is available on the District’s website (http://www.irwd.com/doing-business/engineering-planning/engineering-docs.html).

Section 7.11 of the District’s Rules and Regulations also limit the discharge of fats, oils, and grease. Legal authorities regarding control of fats, oils, and grease are discussed in detail in Section 9.3 of the SSMP and summarized in Table 9-1.
5.2.2 **Proper Design and Construction of Sewers and Connections**

The District’s legal authorities pertaining to the design, construction, and inspection of sewer pipelines and connections are included in IRWD’s Rules and Regulations for Water, Sewer, Recycled Water, and Natural Treatment System Service, IRWD’s Standard Drawings and Standard General Technical Specifications. IRWD also utilizes the Standard Specifications for Public Works Construction, popularly known as the “Greenbook”.

Section 4.4.2 of the District’s Rules and Regulations require the lower lateral and lower lateral connection be designed in accordance with the District’s Procedures Guide and Construction Manual. The District also has the authority to determine and specify the size, location, and manner of installing the lower lateral.

5.2.3 **Lateral Maintenance Access**

Per Section 4.15.1 to 4.15.4 of the District’s Rules and Regulations, property owners are responsible for clearing and cleaning the upper and lower laterals to their connection point with the main sewer. IRWD is only responsible for repairs to the lower lateral to the sewer main. See Section 2 for the definitions for upper and lower laterals. The District’s Construction Manual Standard Detail Drawing S-3 requires a cleanout on the lateral at the property line or edge of easement providing the District with access to the lower lateral. The latest version of the District’s Standard Detail Drawings for the sewer system are available on the District’s website ([http://www.irwd.com/doing-business/engineering-planning/engineering-docs.html](http://www.irwd.com/doing-business/engineering-planning/engineering-docs.html)).

5.2.4 **Enforcement Measures**

Sections 14.1 to 14.3 of IRWD’s Rules and Regulations for Water, Sewer, Recycled Water, and Natural Treatment System Service describe measures available to IRWD staff for enforcement of sewer provisions. Any person, firm, corporation, association, or agency found to be violating any provision of the District’s Rules and Regulations; or the terms and conditions of the applicant’s, owner’s, or customer’s service agreement, permit; or any and all applicable Federal, State, or local statutes, regulations, ordinances; or other requirement; shall be served by the District with written notice stating the nature of the violation and providing a reasonable time limit for the satisfactory correction. The offender shall, within the period of time stated in such notice, permanently cease all violations. This provision is in addition to and not by way of derogation of any other remedies or procedures available to the District by law, regulation, or pursuant to any of the provisions of these Rules and Regulations including, but not limited to, Section 7.

Failure to permanently cease all violations within the time stated shall result in revocation of the permit by the District and termination of water, sewer, recycled water and/or natural treatment system service as provided in Sections 14.2 and 14.3. Violations regarding any one service may result, at the sole discretion of the Board or Manager, in termination of any combination of or all water, sewer, recycled water and natural treatment system service.

5.3 **Agreements with Other Agencies**

The SSMP requirements for legal authority are fulfilled by IRWD’s Rules and Regulations for Water, Sewer, Recycled Water, and Natural Treatment System Service. However, IRWD does have additional legal agreements with other agencies, which are described in this section for reference.

5.3.1 **Orange County Sanitation District Agreement**

A portion of IRWD service boundaries is currently included inside the boundaries of Orange County Sanitation District (OCSD), which has the direct responsibility for the transport and treatment of wastewater discharged to IRWD sewer system pursuant to that agency’s Wastewater Ordinance. In
addition, IRWD coordinates with OCSD to permit and implement the industrial waste requirements of the Clean Water Act and the State Water Resources Control Board. OCSD, in conjunction with IRWD, jointly permit all major industrial dischargers and categorical industries pursuant to its State approved pretreatment program requirements.

5.3.2 South Orange County Wastewater Authority Agreement
A portion of IRWD service boundary is included in the boundaries of the South Orange County Wastewater Authority (SOCWA), which has the responsibility to implement a pretreatment program associated with the facilities that discharge into SOCWA’s Aliso Creek Ocean Outfall (ACOO) pursuant to that agency’s Wastewater Ordinance. IRWD’s Los Alisos Water Recycling Plant (LAWRP) discharges secondary treated effluent into the ACOO. Thus, IRWD coordinates with SOCWA to permit and implement the industrial waste requirements of the Clean Water Act and the State Water Resources Control Board. SOCWA, in conjunction with IRWD, jointly permit all major industrial dischargers and categorical industries pursuant to its State approved pretreatment program requirements.

5.3.3 Satellite Systems
IRWD accepts a small quantity of wastewater into its sewer system from the University of California, Irvine (UCI) which is located within IRWD’s service boundaries. IRWD has a Sewer Service Agreement with UCI regarding acceptance of their discharges and requiring UCI to amend the agreement if additional capacity is required. IRWD has verified that UCI has developed a site specific SSMP for their sewer system. IRWD sewer system has adequate capacity to convey the minor flows it accepts from UCI.
Table 5-1: Summary of IRWD Legal Authorities

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Reference in Rules and Regulations</th>
<th>Reference in Procedural Guidelines* or Standard Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ILLICIT DISCHARGES</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevent illicit discharges into the wastewater collection system</td>
<td>Sec. 7.3.1</td>
<td></td>
</tr>
<tr>
<td>Limit the discharge of fats, oils, and grease and other debris that may cause blockages</td>
<td>Sec. 7.11</td>
<td></td>
</tr>
<tr>
<td>Control infiltration and inflow (I/I) from private service laterals</td>
<td>Sec. 7.3.2</td>
<td></td>
</tr>
<tr>
<td><strong>PROPER DESIGN AND CONSTRUCTION</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require that sewers and connection be properly designed and constructed</td>
<td>Sec. 4.4.2</td>
<td>Procedural Guidelines, Sec. 4</td>
</tr>
<tr>
<td>Require proper installation, testing, and inspection of new and rehabilitated sewers</td>
<td>Sec. 5.1; Sec. 5.2</td>
<td>Procedural Guidelines, Sec. 2.5</td>
</tr>
<tr>
<td><strong>ACCESS TO LATERALS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearly define District responsibility and policies</td>
<td>Sec. 4.15</td>
<td></td>
</tr>
<tr>
<td>Ensure access for maintenance, inspection, or repairs for portions of the service lateral owned or maintained by the District</td>
<td>Standard Detail Drawing S-3</td>
<td></td>
</tr>
<tr>
<td><strong>FOG SOURCE CONTROL</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements to install grease removal devices (such as traps or interceptors)</td>
<td>Sec. 7.11.4</td>
<td></td>
</tr>
<tr>
<td>Design standards for the grease removal devices</td>
<td>Sec. 7.11.6.8</td>
<td></td>
</tr>
<tr>
<td>Maintenance requirements, BMP requirements, record keeping and reporting requirements for grease removal devices</td>
<td>Sec. 7.11.6.8</td>
<td></td>
</tr>
<tr>
<td>Authority to inspect grease producing facilities</td>
<td>Sec. 7.11.7.4</td>
<td></td>
</tr>
<tr>
<td><strong>ENFORCEMENT</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enforce any violations of its sewer ordinances</td>
<td>Sec. 7.11.8</td>
<td>Sec. 14</td>
</tr>
</tbody>
</table>

Chapter 6  Operations and Maintenance Program

This section of the SSMP presents the District’s wastewater collection system operations and maintenance (O&M) program.

6.1 Regulatory Requirements

The WDR requirements for the Operations and Maintenance Program are:

(a) Maintain an up-to-date map of the sanitary sewer system, showing all gravity line segments and manholes, pumping facilities, pressure pipes and valves, and applicable stormwater conveyance facilities;

(b) Describe routine preventive operation and maintenance activities by staff and contractors, including a system for scheduling regular maintenance and cleaning of the sanitary sewer system with more frequent cleaning and maintenance targeted at enhanced maintenance areas. The Preventative Maintenance (PM) program should have a system to document scheduled and conducted activities, such as work orders;

(c) Develop a rehabilitation and replacement plan to identify and prioritize system deficiencies and implement short-term and long-term rehabilitation actions to address each deficiency. The program should include regular visual and TV inspections of manholes and sewer pipes, and a system for ranking the condition of sewer pipes and scheduling rehabilitation. Rehabilitation and replacement should focus on sewer pipes that are at risk of collapse or prone to more frequent blockages due to pipe defects. Finally, the rehabilitation and replacement plan should include a capital improvement plan that addresses proper management and protection of the infrastructure assets. The plan shall include a time schedule for implementing the short- and long-term plans plus a schedule for developing the funds needed for the capital improvement plan;

(d) Provide training on a regular basis for staff in sanitary sewer system operations and maintenance, and require contractors to be appropriately trained; and

(e) Provide equipment and replacement part inventories, including identification of critical replacement parts.

6.2 Collection System Mapping

Irvine Ranch Water District uses Geographic Information System (GIS) technology to create, maintain, and manage maps and data sets associated with its wastewater collection system facilities. The sewer system GIS mapping is maintained by the Engineering and Planning Department. Pipe inventory data includes ownership, installation year, diameter, length, material, slope, status, record drawing reference, and other information. Manhole inventory data includes ownership, installation year, shaft diameter, depth, invert elevation, rim elevation, record drawing reference, and other information. The GIS information is available to all appropriate District field staff in the form of hard copy Atlas maps.

The District last printed Atlas maps in entirety in 2010 however the electronic version of the atlas books are updated on a regular basis. The District has implemented mobile computers to collection system field crews, which will include the ability to access system mapping and as-built plans electronically. Currently, all Collection Systems field crews have access to up-to-date sewer system mapping in electronic format on shared workstations in District offices. Field crews routinely locate and print up-to-date Atlas map pages as needed. In addition, both CCTV crews have access to sewer system mapping in electronic format in the field using the computer on District-owned CCTV trucks.
The District has also scanned all sewer system record drawings into electronic format and has made these drawings available to District staff through Mapple and MapLibrary software, which is available on all workstations. Typically, the Collection System Supervisor or the Collection System Manager will perform the detailed investigations requiring access to sewer system record drawings.

### 6.2.1 Updates to Existing GIS Mapping

The District has a formal process to correct sewer system mapping. All Collection System Maintenance Division field crews are trained to note mapping issues on Field Mapple. The Collection System Supervisors review Field Mapple software and transmit all significant update requests to the CCTV crew for investigation. Upon investigation and verification, the CCTV crew will note changes to the sewer system GIS using Field Mapple software and will transmit this data to the District’s GIS staff electronically. The GIS staff will perform changes to the Atlas maps on a weekly basis. Changes are generally performed in order of submission (i.e., first in - first out) unless a specific request has been made to expedite a change. The updated GIS is posted to the server and available for review immediately after changes are completed.

### 6.2.2 New Improvement Plan Drawings

The District requires that record drawings be prepared and submitted for the installation of new sewer facilities and for the rehabilitation or replacement of existing facilities. The record drawings are submitted in both hard copy and electronic formats. The new record drawings are scanned and linked to the GIS and available through Mapple Library. New or altered facilities are digitized and the associated inventory data are added to the GIS database and hard copy maps weekly.

### 6.3 Preventive Maintenance

The elements of the District’s wastewater collection system Operation and Maintenance Program include proactive, preventive, and corrective maintenance of sewers and lift stations. The District utilizes combination jetter/vacuum units to clean and remove material from the sewer system. Each truck is equipped with an array of nozzles and other tools to support effective cleaning of the sewer system under a variety of situations. A rotating nozzle is primarily utilized for cleaning smaller diameter sewer pipes. The District contracts with the nozzle manufacturer to perform nozzle maintenance as needed. This section describes the District’s O&M programs. **Figure 6-1** provides a map of the District’s sewer system by decade constructed.

#### 6.3.1 Proactive Sewer Cleaning

The District proactively cleans every gravity sewer pipe segment in the wastewater collection system at least once every 2 years on a systematic cleaning cycle. The 2-year systematic cleaning cycle used for proactive sewer cleaning consists of cleaning groups of pipes, organized into “tracks,” which are scheduled in a sequence to clean all pipes less than or equal to 21 inches in diameter starting from the farthest reaches and ending at the treatment plant. **Figure 6-2** shows the sequence of system-wide cleaning performed on a 2-year schedule.

The District cleans all pipes larger than 21-inches in diameter every five years separately from the cleaning performed in the tracks. As staffing permits, Collection Systems crews report to duty at 3 a.m. to perform cleaning of sewer pipes located on arterials as well as larger diameter lines.

#### 6.3.2 Preventive Maintenance Sewer Cleaning

Preventive maintenance sewer cleaning is utilized for sewer reaches with a known history of one or more maintenance issues such as root intrusion, grease accumulation, or debris deposition. Based on the severity of the maintenance issue identified, the Collection Systems Supervisor for that area will assign a monthly or quarterly, or semi-annual sewer enhanced maintenance area cleaning frequency. As additional
information is gathered, either through subsequent cleaning crew findings or CCTV inspection data, the sewer cleaning frequency for individual sites are adjusted to increase or decrease preventive maintenance based on the maintenance needs of individual pipe segments.

The cleaning frequencies for all sewer reaches are all documented in the District’s Field Mapplet database and is linked to GIS. Figure 6-3 provides a map of the District’s current sewer quarterly enhanced maintenance area cleaning program.

6.3.3 Lift Station Operation and Maintenance

The District currently owns, operates, and maintains 12 sewage lift stations. Each of the lift stations are equipped with SCADA and monitored daily by the Collection System Supervisors. The Collection System Supervisors can monitor lift station SCADA data from the office or remotely on laptop computers. The District addresses SCADA alarms on a daily basis. A collection system maintenance crew visits each lift station at least once weekly to perform operational inspections. The Lift Station Weekly Inspection Form is included in Appendix D. The collection system crew documents weekly operational inspections using a Lift Station Inspection Sheet. Collection System Supervisors coordinate maintenance of electrical and mechanical equipment with the District’s Electrical (Dept. 820) and Mechanical (Dept. 840) Services Department.

The District has installed quick-connect connections and isolation valves at critical lift stations to easily bypass the station in the event of lift station mechanical or electrical failure. The District owns replacement pumps for all lift stations.

6.3.4 Maintenance Scheduling

Sewer maintenance activities are scheduled based on maintenance frequency. Collection Systems Supervisors maintain a list of pipelines on the semi-monthly and quarterly cleaning schedule and assign the list for cleaning as the due date approaches. Pipes on the proactive cleaning are cleaned throughout the year and are used to balance the cleaning workload schedule with priority given to preventive maintenance of sewer reaches with known maintenance issues.

6.3.5 System Monitoring

The District has equipped 18 manholes with sensor technology at strategic locations in the sewer system in pipelines with potential capacity constraints and manholes with potential for vandalism or illegal dumping. The sensors trigger alarms in the case of surcharging beyond a preset levels or in the case of intrusion.

The District has also installed redundant level controls at each lift station. In addition to redundant level controls, the District has installed Mission Control Units, which are secondary communication systems in the event of loss of SCADA communication, loss or power, and/or high wet well. In the case of a high wet well, floats are in place to trigger all pumps to turn on. In the event of loss of SCADA communication or power, an alarm is sent to the Collection System Manager, Collection System Supervisors, and Collection System Primary and Secondary Responders.

6.3.6 Maintenance Documentation

The District uses Mapplet-CMMS technology, to document sewer cleaning preventive maintenance activities, including cleaning and inspection activities related to Customer Service Request response and sewer blockage removal. Collection Systems crews document sewer overflow events using the Spill Response Field Report which is included in Appendix E and referenced in the Overflow Emergency Response Plan. Completion of sewer cleaning activities are documented and tracked in the District’s Collection System Field Mapplet database. Collection Systems Supervisors are responsible for entering and reviewing data into the Mapplet-CMMS program collected by their crews.
An important aspect of the District’s sewer cleaning program is to record cleaning results on the computerized reports for each manhole-to-manhole pipe. Those results then provide the basis for the Collection Systems Supervisors to modify the frequency or method of cleaning for that pipe segment to reflect current field conditions. The District is currently recording the severity of cleaning results using the comment field on the Field Mapplet program. The District plans on incorporating code-based values to document the type and severity of sewer cleaning findings, into the District’s Maximo asset management information system. Figure 6-4 charts the process the District utilizes to review cleaning data and modify preventive maintenance frequencies.

In addition to documenting preventive maintenance activities, the District replaced the Customer Service Request System with the Oracle Customer Care and Billing system (Oracle CC&B) in FY 2015. Customer Service documents the customer complaints using the Oracle CC&B system. Customer Service sends a Customer Service Request as both a text and e-mail notification to Collection System Manager and Collection System Supervisors. Customer Service also follows up with a phone call to the Collection System Manager or Collection System Supervisors. During after-hours, when Customer Service is not on duty, all calls are forwarded to the District’s answering service. The answering service contacts the Primary Responder using a text, e-mail notification, and a phone call. The answering service does not enter calls into the Customer Service Request system. During after-hours, the Primary Responder or Collection System First Responder will enter the service call into the Customer Service Request system. The responding Collection System Supervisor will document findings and close-out the Customer Service Request in the Customer Service Request system.

6.3.7 Maintenance Program Analysis
At least once per year, the Collection Systems Manager and Supervisors output a list of pipes from the Field Mapplet program, identifying all locations with maintenance issues and forwards this list to Engineering Services. Engineering Services uses the information to develop future capital projects as needed.
Figure 6-1: IRWD Sewer Pipeline Installation By Decade
Figure 6-2: IRWD System-Wide Sewer Cleaning Plan
Figure 6-3: IRWD Sewer Quarterly Enhanced Maintenance Area Cleaning
Figure 6-4: Sewer Cleaning Scheduling Flowchart

1. Set Initial Cleaning Frequency and Method
2. Schedule and Clean Sewer
3. Document Type and Severity of Findings
4. Continue Scheduled Maintenance Until Corrective Action Complete
5. Analyze Historical Maintenance Data
6. Identify Corrective Action:
   - CCTV Inspect
   - FOG Control Investigation
   - Maintenance Access
   - Chemical Root Control
   - Repair
   - Rehabilitate
   - Replace
7. Complete Corrective Action
8. Re-evaluate Cleaning Frequency
9. Frequency or Method Change Needed?
   - No
   - Yes
10. Corrective Action Needed?
    - No
    - Yes
11. Modify Frequency and/or Method
12. Continue Scheduled Maintenance Until Corrective Action Complete
13. Yes
14. No
6.4 Rehabilitation and Replacement Plan

The District’s sewer system rehabilitation and replacement planning process consists of systematic inspection and condition assessment of all pipe reaches 30 years and older over a 10 year period and identification of condition-related repair, rehabilitation, and replacement projects as determined by condition assessment. The District’s process is to evaluate sewer system structural deficiencies identified through sewer inspection and condition assessment to determine if a repair, rehabilitation, or replacement project is required along with an appropriate timeframe for addressing the structural issues identified.

6.4.1 Sewer System Materials and Age

The sewer system was largely constructed beginning in the 1960s with approximately 50 percent of the system constructed prior to 1994 as shown in Figure 6-5. The oldest 65 miles (5.9 percent) of the sewer system built during the 1960s are currently between 48 to 56 years old.

Figure 6-5: Pipe Material by Year of Installation

*Data is based on current sewer mileage report

Figure 6-6 shows the amount of pipe by material and sewer pipeline age. Currently, approximately 456 miles of sewers are 30 years or older. Over the next 10 years, an additional 211 miles of sewers will reach 30 years in age for a total of 667 miles, or 59.9 percent of the system. In the early phases of construction of the system, the predominant material of construction was vitrified clay pipe (VCP). Beginning in the mid-1970s, the District began installing polyvinyl chloride (PVC) pipe, which has now become the predominant material utilized for new construction.
Of the 492 miles of VCP sewer pipes in the District’s sewer system, only 514 feet were installed prior to 1960. For all intensive purposes, all VCP pipe installed in the District’s sewer system was installed after 1960 with approximately 99 percent installed after 1965. This is an important point since clay pipe experienced significant technological advancements in both standards and methods of manufacture. These advancements included:

Table 6-1: Advancements in Manufacture of Vitrified Clay Pipe Prior to Construction of IRWD Sewer System

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Advancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950s – Present</td>
<td>Pipe extrusion, drying, and firing (vitirification) were greatly improved after World War II. The pipe is more dense with reduced voids and higher strengths.</td>
</tr>
</tbody>
</table>

- **1958-1967:** Factory applied joint for 4-inch through 12-inch bell pipe composed of Polyvinyl Chloride.
- **1962-1967:** Factory applied joint for 15-inch through 42-inch bell pipe composed of Polyester with an embedded gasket in the bell.
- **1966-Present:** Factory applied joint for 4-inch through 42-inch bell pipe composed of Polyurethane.

These advancements in manufacture, combined with advancements in construction techniques, most notably the introduction of standard specifications for installing pipeline connections, significantly improved the quality of construction of the District’s sewer system when compared to sewer systems with
older installations of clay pipe. It is reasonable to assume a mean expected useful life of 100 years for the vitrified clay pipe sewer mains installed in the District’s system. In the mid-1970s, the District began transitioning to the installation of PVC pipe for gravity sewer mains. Similar to VCP pipe, it is reasonable to assume a mean expected useful life of 100 years for PVC sewer mains.

6.4.2 **Collection System Inspection and Condition Assessment**

This section describes the inspection and condition assessment program for sewer manholes and pipelines.

6.4.2.1 **Sewer Manhole Inspection and Condition Assessment**

All collection system crews perform sewer manhole inspection and condition assessment daily in the course of performing sewer cleaning and CCTV inspection activities. Sewer cleaning and CCTV inspection crews rate manhole condition on a 1 to 3 scale, with a 1 being a higher priority and 3 being a lower priority and mark manholes recommended for rehabilitation. The Collection System Supervisors perform a secondary inspection to verify the need and priority of the recommended manhole rehabilitation. Based on the results of the secondary inspection, the District’s GIS staff creates a manhole map book annually, which is included as an attachment in a Request for Bid to hire a contractor to perform manhole rehabilitation. The District has allocated approximately $330,000 annually for capital improvements related to manhole rehabilitation.

6.4.2.2 **Sewer Main Inspection and Condition Assessment**

The District has three full-time in-house CCTV technicians certified to perform sewer inspection and condition assessment according to the National Association of Sewer Service Companies (NASSCO) Pipeline Assessment and Certification Program (PACP) standard. The District’s three CCTV technicians each operate a CCTV truck and operate as a one-person crew. Two of the CCTV technicians are a Senior Collection Systems CCTV Technicians and are responsible for overseeing all CCTV inspection activities. The CCTV inspection trucks each have a Pearpoint pan and tilt CCTV camera and capture CCTV inspection data utilizing Pipelogix software. The Collection Systems CCTV technicians perform an initial condition assessment screening of sewer pipelines to identify repair, rehabilitation, or replacement recommendations, as well as maintenance issues requiring a one-time cleaning or periodic preventive maintenance, and forwards recommendations to the Collection System Manager and Collection Systems Supervisors. CCTV technicians document the specific pipe segment inspected and recommendations using Mapplet-CMMS program, which the CCTV technician or Collection System Supervisor enters into the District’s CCTV database. The associated backup CCTV inspection documentation is uploaded to District servers daily. The Collection Systems Supervisors review CCTV crew recommendations for repair, rehabilitation, or replacement and forward reviewed recommendations to the Collection Systems Manager.

The District plans to inspect all sewer mains within the next 10 years. The District’s goal is to record a baseline condition assessment inspection of each pipe segment in the sewer system by Fall of 2018. The District prioritizes CCTV inspection by age and history of general maintenance issues within a given area. The Collection Systems Supervisors prioritize referrals for CCTV inspection into the CCTV inspection workload. Supervisors give the highest priority to inspection requests on pipes experiencing blockages or suspected of having severe maintenance or structural issues. Figure 6-7 identifies the sewer pipes inspected since March 2013 and the remaining pipes requiring inspection by July 2018.

6.4.3 **Sewer Rehabilitation and Replacement Plan**

Since April 2013, the District has inspected approximately 443 miles of sewer pipes for condition assessment. Table 6-2 summarizes the results of the inspection performed since 2013. Of the 443 miles of sewer pipes inspected, only 10 miles of pipes had one or more NASSCO PACP Structural Grade 4 or
Grade 5 defects requiring repair, rehabilitation, or replacement. This represents 2.3 percent of the sewer system having a structural condition requiring near-term action indicating the sewer system is in very good condition. The District performed these inspections in the older portions of the sewer system. The District expects even less structural issues in the newer portions of the sewer system remaining to be inspected. Figure 6-8 shows the maximum structural grade for all pipelines inspected and highlights pipelines inspected from March 2013 to present day.

Table 6-2: Maximum Structural Defects Observed in Pipe Segments in Since 2013

<table>
<thead>
<tr>
<th>Maximum Structural Defect Observed</th>
<th>Miles of Pipes</th>
<th>Percentage of Total Inspected, By Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACP Structural Grade 5</td>
<td>2.6</td>
<td>0.6%</td>
</tr>
<tr>
<td>PACP Structural Grade 4</td>
<td>7.4</td>
<td>1.7%</td>
</tr>
<tr>
<td>PACP Structural Grade 3</td>
<td>23.8</td>
<td>5.4%</td>
</tr>
<tr>
<td>PACP Structural Grade 2</td>
<td>46.3</td>
<td>10.4%</td>
</tr>
<tr>
<td>PACP Structural Grade 1</td>
<td>69.8</td>
<td>15.7%</td>
</tr>
<tr>
<td>No Structural Defects</td>
<td>293.6</td>
<td>66.2%</td>
</tr>
<tr>
<td>Total Inspected</td>
<td>443.6</td>
<td>100%</td>
</tr>
</tbody>
</table>

The District is addressing existing PACP Structural Grade 4 and Structural Grade 5 defects through a combination of localized repairs or sewer rehabilitation. Since the sewer system is in very good condition, the District has focused on a large portion of existing sewer repair and rehabilitation on addressing pipe segments with maintenance issues. Figure 6-9 shows the location of sewer rehabilitation and repair performed between March 2013 and July 2018 to address significant structural and maintenance defects in the sewer system.
Figure 6-7: Sewer Pipelines Inspected between April 2013 to Present
Figure 6-8: Maximum Structural Defect Grade for Pipes Inspected Between March 2013 and March 2018
Figure 6-9: Sewer Pipeline Rehabilitation and Repair
6.4.4 Capital Improvement Program Funding

The District has funding available to accomplish the capital improvements required to address wastewater collection system capacity, structural, and maintenance issues. In addition to comprehensive system inspection, condition assessment, and capacity modeling, the District has also employed a Replacement Planning Model (RPM). In place since 1996, the RPM utilizes asset management principles to build a funding policy for establishing a funding mechanism for rehabilitation and replacement projects. Collection system sewer pipelines and lift stations are included in the model. The model assumes a 75-year lifecycle for sewer pipelines, which is a conservative estimate since the majority of pipelines in the District’s sewer system are comprised on newer generation materials likely to have a mean lifecycle of 100 years. The model assumes the costs for pipeline rehabilitation and replacement are incurred over a period of years before and after the estimated replacement date, since it is likely some pipelines with fail early and some will last longer.

The RPM also includes lift stations and have varying estimates for the lifecycle of lift station assets ranging from 20 years for pumps to 40 years for the lift station structures. The RPM incorporates assumptions for rehabilitation for lift station assets over the lifecycle of the individual assets prior to full-scale replacement of the asset. In 2010, the Planning and Technical Services Division updated the RPM to include additional pipelines and new facilities. The Planning and Technical Services Division is currently updating the RPM and anticipates costs to be available in FY 2018-19.

The Planning and Technical Services Division utilizes the RPM to generate a report of the projected costs for long-term asset replacement for all District assets, including wastewater collection system pipelines and lift stations. The Planning and Technical Services Division provides the projected costs from the RPM to Finance and Administration for incorporation into the District’s rate model and rate structure.

Cost projections for sewer pipelines from the RPM incorporated in the District’s rate structure are shown in Table 6-3. Cost projections for lift stations are lumped in with cost projections for all treatment plant assets for the treatment plant and are incorporated into the District’s rate structure as well.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Sewer Pipeline Rehabilitation and Replacement ($1,000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY14</td>
<td>$492</td>
</tr>
<tr>
<td>FY15</td>
<td>$492</td>
</tr>
<tr>
<td>FY16</td>
<td>$492</td>
</tr>
<tr>
<td>FY17</td>
<td>$492</td>
</tr>
<tr>
<td>FY18</td>
<td>$492</td>
</tr>
<tr>
<td>FY19</td>
<td>$512</td>
</tr>
<tr>
<td>FY20</td>
<td>$532</td>
</tr>
<tr>
<td>FY21</td>
<td>$553</td>
</tr>
<tr>
<td>FY22</td>
<td>$575</td>
</tr>
<tr>
<td>FY23</td>
<td>$599</td>
</tr>
<tr>
<td>10-Year Total</td>
<td>$5,231</td>
</tr>
</tbody>
</table>
6.5 Training Program

The District provides training on a regular basis to all employees performing operations and maintenance activities on the sewer system assets. The District also requires contractors working on the sewer system to be appropriately trained.

6.5.1 District Staff

The District uses a combination of on-the-job training, conferences, seminars, and other training opportunities to provide technical training for its wastewater collection system staff. Vendors provide training for new equipment. The District’s budget includes approximately $15,000 for CWEA membership for employees and technical training in the form of conferences, seminars, and other training classes. Examples of technical training and training materials the District’s wastewater collection staff might take advantage of are listed in Table 6-4 and Table 6-5.

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Event</th>
<th>Timeframe</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Environment Federation</td>
<td>Collection System Specialty Conference</td>
<td>Periodically</td>
<td><a href="http://www.wef.org">www.wef.org</a></td>
</tr>
<tr>
<td></td>
<td>WEFTEC</td>
<td>Periodically</td>
<td><a href="http://www.weftec.com">www.weftec.com</a></td>
</tr>
<tr>
<td>California Water Environment Association</td>
<td>Santa Ana River Basin Section</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State Conference</td>
<td>Every other April</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southern Regional Safety Conference</td>
<td>May</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Southern Sections Collection Systems Committee</td>
<td>Quarterly</td>
<td></td>
</tr>
<tr>
<td>Southern California Alliance of Publicly Owned Treatment Works</td>
<td>Collection System Committee</td>
<td>Quarterly</td>
<td><a href="http://www.scap1.org">www.scap1.org</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Materials</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>California State University, Sacramento</td>
<td>Videos, manuals, home study courses</td>
<td><a href="http://www.owp.csus.edu">www.owp.csus.edu</a></td>
</tr>
</tbody>
</table>

In addition to technical training provided by outside resources, the District provides in-house technical training to collection system operations and maintenance staff. The focus of in-house training is hands-on training at a work site. Other potential sources of training include the Southern California Chapter of the American Public Works Association.

6.5.1.1 CWEA Certification

All Collection System Operations and Maintenance employees have earned California Water Environment Association Collection System Maintenance certification. Employees responsible for performing collection system maintenance activities enter into the organization as a Collection Systems Tech I and are required to obtain CWEA Collection System Maintenance Grade 1 certification within one year of employment. Collection System Technician II employees are required to have three years of field experience and CWEA Collection Systems Maintenance Grade 2 certification. The CCTV Technician classification is an entry-level position. Senior CCTV Technicians require CWEA Collection Systems Maintenance Grade 3 certification. The Collection System Supervisor position, requires to possess a
CWEA Collection System Maintenance Grade 3 certification with the ability to earn CWEA Collection System Maintenance Grade 4 certification. The Collection System Manager is required to have a CWEA Collection System Maintenance Grade 4 certification, a Bachelor degree in business, public administration, or related field, six years of management experience in the collection system field, and three years of experience as a supervisor.

6.5.1.2 Training Documentation
The District documents all training activities using a Training Sign-In Sheet with signatures of attendees along with training agenda and training handouts. These documents are managed and stored by the Safety Office.

6.5.2 Training Requirements for Contractors
The District requires contractors who work on District sewer projects to be qualified with wastewater collection system experience. The District has a Supplier Assessment Process requiring all contractors to become pre-qualified by the District’s Purchasing Department. Contractors must apply for pre-qualification by submitting a Supplier Assessment Information Sheet. Each contractor must provide the District with three references to demonstrate they are qualified to perform the work and the District performs reference checks to verify contractor qualifications. In addition, during the process of selecting contractors for a specific project, the District requires each contractor to submit a list of three local comparable projects performed using the equipment and techniques specified. These references are checked during the selection process for a specific project.

Once contractors are selected for a specific project, the District requires contractors to provide safety plans, confined space plans, and wastewater bypass plans prior to work. These are reviewed by the Safety Department, Collection System Maintenance, and Engineering prior to commencing project. SSO response is part of their Safety Plan and Wastewater Bypass Plan. In the specification documents there is a notification list with contacts in the case of an emergency (including SSO). If any work involves or requires coordination with pump station operations, the District will provide pump station operations staff to support coordination with contractor activities.

6.6 Equipment and Replacement Parts Inventory
The District has assembled equipment and replacement parts inventory to quickly address a lift station or a sewer main failure.

6.6.1 Equipment and Replacement Parts Inventory for Sewer Mains
The District does not consider a sewer main as requiring critical spare parts. The District has stored PVC pipe in various sizes at the Michelson Water Reclamation Plant along with fittings and coupling required to perform a pipeline repair. The District also owns three trailer-mounted bypass pumps for bypassing sewer main failures, if required, along with 6,000 feet of 8-inch diameter flexible hose on two different spools and 2,000 feet of 6-inch diameter flexible hose on a separate spool. The three existing pumps include:

- One (1) 6-inch pump;
- One (1) 10-inch pump;
- One (1) 12-inch pump

6.6.2 Equipment and Replacement Parts Inventory for Lift Stations
The District has identified lift stations pumps and motors as critical spare parts. The District owns spare pumps and motors for all lift stations. In addition, the District owns spare level transducers enabling quick
replacement when needed. The District has designated backup pumps and backup power providing redundancy at each lift station.
Chapter 7  Design and Performance Provisions

This section of the SSMP documents IRWD’s design and performance provisions.

7.1 Regulatory Requirements

The WDR requires IRWD to have the following design and performance provisions:

(a) IRWD must have design and construction standards and specifications for the installation of new sewer systems, pump stations and other appurtenances; and for the rehabilitation and repair of existing sewer systems;

(b) IRWD must also have procedures and standards for inspecting and testing the installation of new sewers, pump stations, and other appurtenances and for rehabilitation and repair projects.

7.2 Design and Construction Standards

The District has developed design and construction standards for the installation of new sewer systems, pump station components, and other appurtenances. The latest versions of all of the District’s design and construction standards, guidelines, specifications, and details are publicly available on the internet at http://www.irwd.com/doing-business/engineering-planning/engineering-docs.html.

The District’s webpage includes the following documents:

- Procedural Guidelines and General Design Requirements
- Standard Drawings
- General Technical Specifications

In addition, anyone interested in automatically receiving updates to the District’s documents, guidelines, and requirements can sign up for IRWD eNotify (http://www.irwd.com/about-us/e-notifications.html), which will send e-mail notifications when changes are made to any of the documents or when a change is posted to the IRWD website.

The District’s Procedural Guidelines and General Design Requirements include:

- Development Plan and Permit Processing Procedures
  - District authority to access work site
  - Sewer system inspection standards and procedures for construction
- Design Criteria for Sewer Facilities
  - Pipe size, material, minimum and maximum slope, and flow design criteria;
  - Standard location and alignment, stationing, and minimum depth;
  - Manhole location, size, type, frame and covers, and lining;
  - Cleanout design criteria;
  - Force main design criteria;
  - Sewer lateral design criteria;
  - Sewer pump stations design criteria; and,
Design criteria for easement and right-of-way for sewer.

The District’s Sewer Standard Drawings includes the following eight standard details for the sewer system listed in Table 7-1.

**Table 7-1: Sewer Standard Drawings**

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Manhole</td>
</tr>
<tr>
<td>S-2</td>
<td>Drop Manhole</td>
</tr>
<tr>
<td>S-3</td>
<td>Sewer Lateral</td>
</tr>
<tr>
<td>S-4</td>
<td>Cut-in Wye Connection</td>
</tr>
<tr>
<td>S-5</td>
<td>Terminal Cleanout</td>
</tr>
<tr>
<td>S-6</td>
<td>Sewer Trench</td>
</tr>
<tr>
<td>S-7</td>
<td>Steel Casing for Sewer Pipe</td>
</tr>
<tr>
<td>S-8</td>
<td>Concrete Slope Anchors</td>
</tr>
</tbody>
</table>

The District’s General Technical Specifications, for use in all District construction contracts, includes a comprehensive set of specifications for sewer system pipelines and facility construction. The District contracts with a design engineer for the development of design drawings and specifications for sewer pipeline and pump station rehabilitation and replacement projects. In addition, IRWD has adopted and uses the Standard Specifications for Public Works Construction (Greenbook).

### 7.3 Inspection and Testing Standards


The District’s Procedural Guidelines and General Design Requirements requires sewer inspections at the following intervals:

- Trench excavation and bedding
- Placing of pipe, fittings, and structures
- Placing and compacting the pipe zone backfill
- Backfill of the trench to grade
- Raising of manhole and clean-outs and during system cleaning
- Pipeline CCTV inspection at completion of construction

Prior to pipelines CCTV inspection, pipelines must be balled and flushed, air-tested, and mandrelled. CCTV inspection is then performed to determine if any of the following defects exist:

- Off grade - 0.08 foot, or greater, deviation from grade.
- Joint separations exceeding ¾-inch.
• Misaligned joints (none permitted on straight runs or on wrong side of pipe curves). Joint spaces exceeding ¾-inch on designed curves.
• Chips in pipe ends more than ¼” deep.
• Cracked or damaged pipe or evidence of presence of an external object bearing upon the pipe (rocks, roots, etc.).
• Dropped joints.
• Infiltration in excess of maximum permissible specified in the District Standard Specifications, Section 15043.
• Debris or other foreign object in the line.
• Other obvious deficiencies.

Any defects found must be corrected prior to final acceptance. Inspection and testing standards for sewer pipeline repair and rehabilitation projects are developed by the design engineer during the design phase of the project. Similar, inspection and testing requirements for pump station repair or rehabilitation projects are developed by the design engineer during the design phase of the project.
Chapter 8  Overflow Emergency Response Plan

The purpose of the Overflow Emergency Response Plan (OERP) is to support an orderly and effective response to Sanitary Sewer Overflows (SSOs). This plan provides guidelines for District personnel to follow in responding to, cleaning up, and reporting SSOs that may occur within the District’s service area.

8.1 Regulatory Requirements

IRWD shall develop and implement an overflow emergency response plan that identifies measures to protect public health and the environment. At a minimum, this plan must include the following:

(a) Proper notification procedures so that the primary responders and regulatory agencies are informed of all SSOs in a timely manner;

(b) A program to ensure appropriate response to all overflows;

(c) Procedures to ensure prompt notification to appropriate regulatory agencies and other potentially affected entities (e.g. health agencies, regional water boards, water suppliers, etc.) of all SSOs that potentially affect public health or reach the waters of the State in accordance with the Monitoring and Reporting Program. All SSOs shall be reported in accordance with this MRP, the California Water Code, other State Law, and other applicable Regional Water Board Waste Discharge Requirements or National Pollutant Discharge Elimination System (NPDES) permit requirements. The SSMP should identify the officials who will receive immediate notification;

(d) Procedures to ensure that appropriate staff and contractor personnel are aware of and follow the Emergency Response Plan and are appropriately trained;

(e) Procedures to address emergency operations, such as traffic and crowd control and other necessary response activities; and

(f) A program to ensure that all reasonable steps are taken to contain untreated wastewater and prevent discharge of untreated wastewater to waters of the United States and minimize or correct any adverse impact on the environment resulting from the SSOs, including such accelerated or additional monitoring as may be necessary to determine the nature and impact of the discharge.

8.2 Goals of the Overflow Emergency Response Plan

The District’s goals with respect to responding to SSOs are:

- Work safely;
- Minimize public contact with the spilled wastewater;
- Respond quickly to minimize the volume of the SSO;
- Eliminate the cause of the SSO;
- Contain the spilled wastewater to the extent feasible;
- Prevent sewage system overflows or leaks from entering the storm drain system or receiving waters to the maximum extent practicable;
- Mitigate the impact of the SSO; and
- Meet the regulatory reporting requirements.
8.3 SSO Detection

The processes that are employed to notify the District of the occurrence of an SSO include: observation by the public, receipt of an alarm, or observation by District staff during the normal course of their work.

8.3.1 Public Observation and Emergency Communications

Public observation is the most common way that the District is notified of blockages and spills. Contact information for reporting sewer spills is located on monthly water bills and on the District’s website at www.irwd.com/about-us.contact.

8.3.1.1 Normal Work Hours

The normal working hours for District office staff, including Customer Service staff responsible for answering emergency calls, is from 7:30 a.m. to 5:00 p.m. Monday through Thursday. The office is open every other Friday from 7:30 a.m. to 4:00 p.m. Customer service staff are available to answers calls every Friday from 7:30 a.m. to 4:00 p.m. The District’s Collection System Maintenance field crews operate on a 4/10 schedule. Staff alternate schedules either working on Monday through Thursday from 6:00 a.m. to 4:30 p.m. or Tuesday through Friday from 6:00 a.m. to 4:30 p.m. When a report of a sewer spill or backup is received, the Customer Service representative receives the call, takes the information from the caller and communicates this information to the Collection System Manager or Supervisors who dispatch a field crew to the site. Emergency calls received by the City of Irvine or County of Orange are routed to the IRWD Customer Service main line.

8.3.1.2 After Hours

After hours emergency calls go to the District’s after hours answering service. The District’s after hours answering service staff are trained to gather basic information regarding a customer complaint and relay this information to the District Primary Responder. The District Primary Responder is trained to investigate any emergency issue and is responsible for either addressing the issue or contacting an appropriate standby response crews. The Field Services Manager is responsible for maintaining the Standby List for all departments containing the names, phone numbers, and responsibilities for standby employees and distributing an updated list weekly via e-mail.

The District’s afterhours approach to sewer overflow response is to include employees with different skill sets on the Standby List enabling the District to respond quickly and effectively to a variety of emergencies involving sewer pipelines or sewer pump stations. The Standby List includes the following designations for standby employees:
### Table 8-1: Standby List Positions and Roles

<table>
<thead>
<tr>
<th>Standby Position</th>
<th>Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Responder</td>
<td>Investigate service calls and either address issue or request support from specialized standby personnel as needed.</td>
</tr>
<tr>
<td>First Backup</td>
<td>Provide backup support to primary responder as requested.</td>
</tr>
<tr>
<td>Second Backup</td>
<td>Provide backup support to primary responder as requested.</td>
</tr>
<tr>
<td>Collection System (1&lt;sup&gt;st&lt;/sup&gt;)</td>
<td>Respond to sewer-related service calls when requested by Primary Responder.</td>
</tr>
<tr>
<td>Collection System (2&lt;sup&gt;nd&lt;/sup&gt;)</td>
<td>Respond to sewer-related service calls when requested by Primary Responder.</td>
</tr>
<tr>
<td>Electrical Services</td>
<td>Respond to service calls requiring expertise in electrical systems. This includes electrical systems for sewer pump station issues.</td>
</tr>
<tr>
<td>Water System Operator</td>
<td>Responds to service calls requiring water system operational expertise.</td>
</tr>
<tr>
<td>Regulatory Compliance</td>
<td>Responds to service calls involving water quality issues.</td>
</tr>
<tr>
<td>Standby Manager</td>
<td>A list is provided to standby staff for all IRWD managers. All managers are available to respond during off-hours.</td>
</tr>
<tr>
<td>LAWRP Plant Operator</td>
<td>Respond to after-hours issues related to, or requiring coordination with, LAWRP operations.</td>
</tr>
<tr>
<td>MWRP Treatment Plant Operator</td>
<td>Respond to after-hours issues related to, or requiring coordination with, MWRP operations.</td>
</tr>
</tbody>
</table>

Information from the emergency call is recorded on the Spill Response Field Report Form included in Appendix E.

#### 8.3.1.3 Routing of Calls

Any calls answered by the District’s answering service are routed to the Primary Responder on the Standby List. District customer service staff are trained to send sewer overflow calls to the Collection System Maintenance Supervisor during normal business hours and to the Collection System First Responder after 4:30 p.m. on Monday through Friday.

### 8.4 SSO Response Procedures

Sewer service calls are high priority events that demand a prompt response to the location of the problem. Upon notification of a potential sewer overflow, a District Primary Responder shall be dispatched onsite within 30 minutes during normal working hours and during standby. During normal working hours, the District’s Primary Responder will be a Department 570 Collection System maintenance crew. During after hours, the District’s Primary Responder will be assigned personnel from Department 420, 425, or 430 who will investigate the service call to determine the appropriate response.
The response procedures for SSOs caused by District-owned sewers and private laterals within the District service area are depicted in Figures 8-1 and 8-2.
Figure 8-1: SSO Response Procedure Flow Chart

**SSO Notification Procedure Flow Chart**

- Potential Sever System Overflow (SSO) observed
  - Collection Systems Department notified
  - Collection Systems responds to and determines SSO category
    - Discharge confirmed to be a categorized SSO?
      - No
        - If PLSD event, see Attachment C for PLSD Notification Procedure Otherwise, refer non-SSO/PLSD event to applicable department
      - Yes
        - Did 50,000 gallons or greater reach surface waters?
          - No
            - Water Quality Standby staff collects a water quality sample
          - Yes
            - Did 50,000 gallons or greater reach surface waters?
              - No
                - Collection Systems notifies Regulatory Compliance staff collects a water quality sample
              - Yes
                - Collection Systems notifies non-regulatory agencies within notification timeframe
      - Yes
        - Collection Systems notifies Regulatory Compliance
          - Collection Systems notifies the following regulatory agencies based on spill category within notification timeframe:
            - California Office of Emergency Services*
            - Orange County Health Care Agency
            - Regional Water Board
            - Orange County Public Works (if necessary)
            - City of spill location (if necessary)
            - Orange County Sanitation District (if necessary)

- Regulatory Compliance notifies the following agencies:
  - Orange County Public Works (if necessary)
  - City of spill location (if necessary)

- Regulatory Compliance notifies internal IRWD staff
  - Collection Systems Department completes review of initial SSO report and provides a copy with timestamp photos (if applicable) to Regulatory Compliance within 24 hours or next business day
  - Regulatory Compliance enters draft SSO report into CIWQS within 3 business days or as appropriate by spill category

*Notify Cal OES if spills > 1,000 gallons that reach surface waters or spilled at a location where it probably will be discharged to surface waters.
Figure 8-2: PLSD

PLSD Notification Procedure Flow Chart

Collection Systems notifies FOG implementer for on-site assistance if needed and informs Regulatory Compliance of notification

Is PLSD FOG/ GreaseInterceptor related?

Yes

Event occurred during normal work hours?

No

Did 1,000 gallons or greater reach surface waters?

Yes

Collection Systems notifies the following agencies within notification timeframe:
California Office of Emergency Services
Orange County Health Care Agency
Regional Water Board
Orange County Public Works (if necessary)
City of spill location (if necessary)

No

Collection Systems provides Regulatory Compliance with necessary PLSD information within 24 hours

Yes

Did 1,000 gallons or greater reach surface waters?

No

Collection Systems notifies Regulatory Compliance of PLSD event by next business day

Yes

Collection Systems provides Regulatory Compliance with necessary PLSD information within 2 hours

Regulatory Compliance notifies the following regulatory agencies:
Orange County Health Care Agency (if necessary)

Regulatory Compliance notifies the following regulatory agencies within notification timeframe:
California Office of Emergency Services
Orange County Health Care Agency
Regional Water Board

Collection Systems notifies the following agencies:
Orange County Public Works (if necessary)
City of spill location (if necessary)

Collection Systems Department completes final internal review of PLSD report and provides a copy to Regulatory Compliance within 15 days of the PLSD

Regulatory Compliance enters PLSD report into CIWQS by the end of the following month that the PLSD occurred in

*Notify Cal OES of spills ≥ 1,000 gallons that reach surface waters or spilled in a location where it probably will be discharged to surface waters
8.4.1 Safety
The District’s Primary Responder, as first responder, is responsible for following District safety procedures at all times.

8.4.1.1 Traffic Control
Traffic control requirements vary depending on the location and the risk to operating personnel and the public. CalTrans standards are the minimum for congested and/or high-speed streets and highways. The minimum traffic controls for low-speed/low-traffic-density streets should conform to the Federal Highway Administration Manual on Uniform Traffic Control Devices (MUTCD), the California Department of Transportation MUTCD, and the Watch Book Manual standards. In the case where there are no local standards, the minimum traffic control should be:

- Warning signs (signs with the symbol for person working are preferred);
- Directional arrow signs on rear of the truck;
- Traffic cones clearly delineating traffic lanes and directions; and
- One or more flaggers utilized to control and direct traffic where visibility is limited or the possibility of collision exits.

8.4.2 Primary Responder Priorities
The Primary Responder’s priorities, as the first person to respond to the call, are:

- To follow safe work practices;
- To respond promptly with appropriate equipment;
- To contain the spill wherever feasible;
- To restore the flow as soon as practicable;
- To minimize public access to and/or contact with the spilled sewage;
- To return the spilled sewage to the wastewater collection system; and
- To restore the area to its original condition (or as close as possible).

8.4.3 Initial Response
Clarify that the Primary Responder during standby will perform initial assessment either through phone call interview or initial site assessment. Once the Primary Responder determines it is a sewer-related event, they will transfer the call to Collection Systems Maintenance.

The Primary Responder is responsible for contacting the reporting party to clarify the situation and collect any additional information that may allow District personnel to respond in an efficient manner. If the Primary Responder determines the event is sewer-related, immediately contact the Collection Systems Maintenance standby staff. Whichever person arrives to the site first will:

- Field verify the address and nearest cross street to determine whether the spill or backup is located in the District’s service area.
  - If the location of the spill is not in the District’s service area or not caused by the District’s sewer system, call the responsible agency, provide them with the service call information, and notify the caller that the responsible agency has been notified. The District’s Emergency Directory contains contact information for surrounding agencies.
  - If the spill/backup is caused by another agency sewer system, the responding crew will standby until representatives of the responsible party arrive and are fully operational.
unless an emergency on one of the District’s sewers requires the team to respond to another location.

- Notify the Collection Systems Manager and Collection System Supervisor when an SSO is verified. The Collections System Manager will work with crew to determine if additional resources are needed and level of response.
- Respond with the appropriate spill response equipment that has spill containment tools, materials and any additional equipment that may be needed based on the details provided by the caller.
  - Note arrival time at spill site.
- If the spill/backup is caused by a private lateral, the responding crew should contain/mitigate the spilled sewage to prevent sewage from entering the public right of way without District staff going on private property.
- Set up traffic and pedestrian control as necessary for safety of the public and the response crew.
- Identify and assess the affected area and extent of spill. If possible, take photographs to document the extent of the spill.
  - If the spill appears to be too large for the response crew to handle or is in an area that may cause danger to human health (e.g. impacting a school, hospital, park, etc.), then document conditions upon arrival with photographs.
- Use best judgment to determine whether to proceed immediately with blockage removal versus containment. The guidance for this decision is:
  - Small spills – proceed with immediate containment measures near the appearance point followed by blockage removal.
  - Moderate or large spill where containment is anticipated to be simple – proceed with immediate containment measures near the appearance point followed by blockage removal.
  - Moderate or large spills where containment is anticipated to be difficult – proceed with clearing the blockage; however, call for additional assistance immediately to focus on implementing containment measures.

### 8.4.4 Restore Flow

Using the appropriate cleaning tools, set up downstream of the blockage and hydro clean upstream from a clear manhole. Attempt to remove the blockage from the system and observe the flows to ensure that the blockage does not recur downstream.

- If the blockage cannot be cleared within a reasonable time (15 minutes), or the sewer requires construction repairs to restore flow, then initiate additional containment measures and/or bypass pumping.
- If assistance is required, contact other employees, contractors, and equipment suppliers.

### 8.4.5 Initiate Spill Containment Measures

The responding crew should attempt to contain as much of the spilled sewage as possible using the following steps:

- Determine the immediate destination of the overflowing sewage.
- Implement immediate containment measures consisting of plugging storm drains using sandbags, plastic sheeting, and/or other dam construction material to contain the spill, whenever appropriate.
Additional containment measures include containing/directing the spilled sewage using dike/dam, sandbags, or earthen berms in landscaped or undeveloped areas.

Pump around the blockage/pipe failure to convey the wastewater to the nearest downstream manhole or facility.

If the spill is caused by a sewer lateral, District staff may shut off the water supply to that property when the wastewater endangers the public health.

### 8.4.6 Water Quality Sampling and Testing

Water quality testing is performed to determine the extent and impact of an SSO when sewage enters a water body. Water quality sampling is required to be conducted within 48 hours after initial SSO notification for Category 1 SSOs in which 50,000 gallons or greater are spilled to surface waters. If required, the water quality sampling procedures are:

- The Collection Systems Manager, Collection System Supervisor, or Collection System First Responder will contact Regulatory Compliance personnel during normal hours, or the Water Quality standby personnel during after-hours, to collect samples. Regulatory Compliance personnel or the Water Quality standby will collect samples within 48 hours after the discovery of the SSO event.

- The District has a state-certified laboratory to analyze the samples to determine the nature and impact of the discharge. The basic analyses include ammonia, total coliform, fecal coliform, and Enterococcus.

### 8.4.7 Recovery and Clean Up

The recovery and clean up phase begins when the flow has been restored and the spilled sewage has been contained to the extent possible. The SSO recovery and clean up procedures include the steps below.

#### 8.4.7.1 Estimate the Volume of Spilled Sewage

Use the methods outlined in Appendix E, or other methods as deemed necessary, to estimate the volume of the spilled sewage. If possible, utilize available information such as pump station run times and Supervisory Control and Data Acquisition (SCADA) data to support or validate volume estimates. Wherever possible, document the estimate using photos of the SSO site before and during the recovery operation.

#### 8.4.7.2 Recovery of Spilled Sewage

Vacuum up spilled sewage using the hydro/combo unit or pump the spilled sewage and any water used to flush the area and discharge it back into the wastewater collection system.

#### 8.4.7.3 Clean Up and Disinfection

Implement clean up and disinfection procedures to reduce the potential for human health issues and adverse environmental impacts that are associated with an SSO event. The procedures described are for dry weather conditions and should be modified as required for wet weather conditions. Where clean-up is beyond the resources or capabilities of District staff, the District may use a contractor to support clean-up operations.

#### 8.4.7.3.1 Hard Surface Areas

Take reasonable steps to contain and vacuum up the wastewater and return it to the wastewater collection system. Collect all signs of sewage solids and sewage-related material either by hand or with the use of
rakes and brooms. Wash down the affected area with high pressure water using nozzles on provided on the hydro/combo unit and vacuum the wash water utilizing the hydro/combo unit. Allow area to dry. Repeat the process if additional cleaning is required.

8.4.7.3.2 Landscaped and Unimproved Natural Vegetation
Collect all signs of sewage solids and sewage-related material either by hand or with the use of rakes and brooms.
Wash down the affected area with clean water until the water runs clear. The flushing volume should be approximately three times the estimated volume of the spill.
Either contain or vacuum up the wash water so that none is released. Return the wastewater to the wastewater collection system to the extent possible.
Allow the area to dry. Repeat the process if additional cleaning is required.

8.4.7.3.3 Natural and Man-Made Waterways
Notify Orange County Public Works in the event an SSO impacts any waterways. Contain contaminated creeks where feasible. Remove all contaminated water by pumping to the collection system or vacuuming by means of vacuum truck and return all collected water to the sewer system. Introduce additional wash water as needed to flush contaminated areas towards the containment area.

8.4.7.4 Wet Weather Modifications
Omit flushing and sampling during heavy storm events with heavy runoff where flushing is not required and sampling would not provide meaningful results.

8.4.8 Follow Up Activities
If sewage has reached the storm drain system, the hydro/combo unit should be used to vacuum/pump out the catch basin. Flush the storm drain system with wash water and capture all residual wash water at a point of containment downstream.
In the event that an overflow occurs at night, inspect the location early on the following morning. The operator should look for any signs of sewage solids and sewage-related material that may warrant additional cleanup activities.
If the District sewer causes an overflow on a private property, restore flow and notify the Collection Systems Manager. The Collection Systems Manager will notify the Director of Recycling Operations and the Manager of Contracts Administration and Risk to determine if any immediate steps to rectify the issue are required. Provide the customer with the contact information for the Manager of Contracts Administration and Risk to make a claim, pending investigation.

8.5 Traffic and Crowd Control
Place barricades, cones, traffic arrow board, and caution tape as needed to keep vehicles and pedestrians away from contact with spilled sewage.

8.6 Public Notification
If an SSO affects a waterway or ocean requiring posting of signage, contact Orange County Public Works. Orange County Public Works will post and remove signage for waterways and beach closures as required and will not remove the signs until the effects of the spill have been mitigated.
Major spills may warrant broader public notice. The Collection Systems Manager and/or Director of Recycling Operations will contact the Director of Public Affairs or the Public Affairs Manager. Public Affairs will create and execute the outreach plan for media. If media crews show up at a job site the crews will ask media personnel to wait and will contact Public Affairs immediately. Do not respond to questions from the media or interview requests unless the Director of Public Affairs or the Public Affairs Manager provides direction and permission. The approval of the Public Affairs is required prior to contacting local media when significant areas may have been contaminated by sewage.

8.7 SSO Event Investigation

The objective of the SSO event investigation is to determine the cause of the SSO and to identify corrective action(s) needed that will reduce or eliminate potential for the SSO to recur.

The investigation includes reviewing all relevant data to determine appropriate corrective action(s) for the line segment. The investigation will be conducted by the Collection Systems Manager and/or Collection Systems Supervisor and reported to the Director of Recycling Operations or his/her designee.

The investigation should include:

- Reviewing and completing/correcting the Sanitary Sewer Overflow Report Form;
- Reviewing available photographs;
- Reviewing historical maintenance activities;
- Conducting a CCTV inspection to determine the condition a portion of the line segment immediately following the SSO and reviewing the video and logs; and
- If FOG-related, reviewing the results of a FOG source control investigation;
- Debrief with staff who responded to the spill.

The goal of the SSO event investigation is to determine the cause of the SSO event and to identify appropriate corrective actions. The District’s standard practice is, at a minimum, to perform additional cleaning of the pipe containing the blockage that caused the SSO event along with the pipes immediately upstream and downstream.

8.8 SSO Categories

The California State Water Resources Control Board (SWRCB) has established guidelines for classifying and reporting SSOs. Reporting and documentation requirements vary based on the type of SSO.

Currently, there are three categories of SSOs as defined by the SWRCB:

- **Category 1** – Discharges of untreated or partially treated wastewater of any volume resulting from a sanitary sewer system failure or flow condition that:
  - Reach surface water and/or reach a drainage channel tributary to a surface water; or
  - Reach a Municipal Separate Storm System (MS4) and are not fully captured and returned to the sanitary sewer system or not otherwise captured and disposed of properly. Any volume of wastewater not recovered from the MS4 is considered to have reached surface water unless the storm drain system discharges to a dedicated water or groundwater infiltration basin.

---

1 State Water Resources Control Board Monitoring and Reporting Program No. 2006-0003-DWQ (as revised by Order No. WQ 20-0002.13-0058-.EXEC) Statewide General Waste Discharge Requirements for Sanitary Sewer Systems
• **Category 2** – Discharges of untreated or partially treated wastewater of 1,000 gallons or greater resulting from a sanitary sewer system failure or flow condition that do not reach surface water, a drainage channel, or a MS4 unless the entire SSO discharged to the storm drain system is fully recovered and disposed of properly.

• **Category 3** – All other discharges of untreated or partially treated wastewater resulting from a sanitary sewer system failure or flow condition.

• **Private Lateral Sewage Discharges** – Discharges of untreated or partially treated wastewater resulting from blockages or other problems within a privately owned sewer lateral connected to the sanitary sewer system or from private sewer assets.

### 8.9 SSO Documentation and Reporting

All SSOs should be thoroughly investigated and documented for use in managing the wastewater collection system and meeting established reporting requirements. The procedures for investigating and documenting SSOs are:

#### 8.9.1 Internal SSO Reporting Procedures

The Collection Systems Primary Responder will fill out the Sanitary Sewer Overflow Field Report Form and turn it in to the Collection Systems Supervisor. Collection Systems management reviews and completes a draft of the report and will send a copy to Regulatory Compliance staff documenting all field activities. Regulatory Compliance staff is required to enter all required information into the State Water Resources Control Board (SWRCB) California Integrated Water Quality System (CIWQS) Online SSO Reporting System. The LRO certifies the SSO Report in CIWQS.

#### 8.10 External SSO Reporting Procedures

CIWQS is used for reporting SSO information to the SWRCB whenever possible. The procedures for external SSO notification and reporting, including contact information is contained within IRWD’s Environmental Working Practice 6 (EWP-6) for Sanitary Sewer Overflow Notification and Reporting and is included in Appendix C. These procedures are consistent with the Monitoring and Reporting Requirements in the WDR.

---

2 State Water Resources Control Board Monitoring and Reporting Program No. 2006-0003-DWQ (as revised by Order No. WQ 2013-0058-EXEC) Statewide General Waste Discharge Requirements for Sanitary Sewer Systems
8.10.1.1 No Spill Certification (Monthly)

If there are no SSOs during the calendar month, the Legally Responsible Official will submit and certify an electronic report that the District did not have any SSOs, **within 30 days after the end of each calendar month**.

8.10.2 Internal SSO Documentation

8.10.2.1 Category 1, 2, and 3 SSOs

Collection Systems management will complete the SSO Response Report form and provide a draft report to Regulatory Compliance. Collection Systems management will assemble all available documentation and review, complete, and submit an internal report of all available information to Regulatory Compliance staff via e-mail.

An electronic file for each individual SSO will be prepared. The electronic file should include the following information as available:

- Initial service call information;
- Spill Response Field Report;
- Volume estimate;
- Map showing the spill location;
- Photographs of spill location;
- CCTV inspection data, if applicable;
- Water quality sampling and test results, if applicable;
- SSO event investigation results; and
- Any other forms related to the SSO.

8.10.2.2 Private Lateral Sewage Discharges

Collection Systems management will complete the PLSD Response Report form and provide a draft report to Regulatory Compliance. Collection Systems management will assemble all available documentation and review, complete, and submit an internal report of all available information to Regulatory Compliance staff via e-mail.

A separate electronic file will be prepared for each individual PLSD. The file will include any relevant information from the above list.

8.10.3 External SSO Record Keeping Requirements

The WDR requires that individual SSO records be maintained for a minimum of **five years** from the date of the SSO. This period may be extended when requested by a Regional Water Quality Control Board Executive Officer.

All records shall be made available for review upon State or Regional Water Board staff's request. Records shall be retained for all SSOs, including but not limited to the following when applicable:

---

3 State Water Resources Control Board Monitoring and Reporting Program No. 2006-0003-DWQ (as revised by Order No. WQ 2013-0058-EXEC) Statewide General Waste Discharge Requirements for Sanitary Sewer Systems
• Any photos (if taken);
• SSO Response Report form;
• Steps that have been and will be taken to prevent the SSO from recurring and a schedule to implement those steps.

If water quality samples are required by the WDR, or if voluntary monitoring is conducted by the District, as a result of any SSO, records of monitoring information shall include:

• The date, exact place, and time of sampling or measurements;
• The individual(s) who performed the sampling or measurements;
• The date(s) analyses were performed;
• The individual(s) who performed the analyses;
• The analytical technique or method used; and
• The results of such analyses.

### 8.10.4 Post SSO Event Debriefing

As soon as possible after major SSO events, all of the participants, from the person who received the call to the last person to leave the site, should meet to review the procedures used and to discuss what worked and where improvements could be made in responding to and mitigating future SSO events.

### 8.11 Equipment

This section provides a list of specialized equipment that should be used to support this Sanitary Sewer Overflow Emergency Response Plan.

**Camera** -- A digital or disposable camera to record the conditions upon arrival, during clean up, and upon departure.

**Closed Circuit Television (CCTV) Inspection Unit** – A CCTV Inspection Unit to determine the cause for all SSOs from gravity sewers. This equipment can be provided by a contractor.

**Combination Sewer Cleaning Truck** -- A combination high velocity sewer cleaning truck with vacuum tank to clear blockages in gravity sewers, vacuum spilled sewage, and wash down the impacted area following the SSO event.

**Emergency Response Trailer** -- A trailer to store and transport the equipment needed to effectively respond to sewer emergencies. The equipment and tools should include containment and clean up materials: sandbags, barricades, cones, caution tape, signs, rakes, drop-inlet mats, and plastic sheeting.

**Portable Generators, Portable Pumps, Piping, and Hoses** -- Portable equipment used to support this plan is available at the Operations Facility.

### 8.12 SSO Response Training

This section provides information on the training that is required to support this Overflow Emergency Response Plan.

#### 8.12.1 Initial and Annual Refresher Training

All District personnel who may have a role in responding to, reporting, and/or mitigating a wastewater collection system overflow receive annual training on the contents of this OERP. All new employees receive training before they are placed in a position where they may have to respond.
8.12.2  **SSO Training Record Keeping**

The District maintains records for all OERP training provided in support of this plan. The records for all scheduled training courses and for each overflow emergency response training event include date, time, place, content, name of trainer(s), and names of attendees.

8.13  **Contractors Working on District Sewer Facilities**

All contractors working on District sewer facilities are required to develop an overflow response plan, which identifies who the contractor will contact at the District and any actions a contractor is required to perform in the event of an SSO.
Chapter 9    FOG Control Program

This section of the SSMP presents the District’s Fats, Oils, and Grease (FOG) control program to reduce the amount of FOG discharged into the sanitary sewer system.

9.1    Regulatory Requirements

The Statewide General WDR for Wastewater Collection Agencies (Order No. 2006-003) requires the development of a FOG source control program to reduce the amount of FOG discharged to the sanitary sewer system. The requirement in the WDR is as follows:

**FOG Control Program**: Each Enrollee shall evaluate its service area to determine whether a FOG control program is needed. If an Enrollee determines that a FOG program is not needed, the Enrollee must provide justification for why it is not needed. If FOG is found to be a problem, the Enrollee must prepare and implement a FOG source control program to reduce the amount of these substances discharged to the sanitary sewer system. This plan shall include the following as appropriate:

(a) An implementation plan and schedule for a public education outreach program that promotes proper disposal of FOG;

(b) A plan and schedule for the disposal of FOG generated within the sanitary sewer system service area. This may include a list of acceptable disposal facilities and/or additional facilities needed to adequately dispose of FOG generated within a sanitary sewer system service area;

(c) The legal authority to prohibit discharges to the system and identify measures to prevent SSOs and blockages caused by FOG;

(d) Requirements to install grease removal devices (such as traps or interceptors), design standards for the removal devices, maintenance requirements, BMP requirements, record keeping and reporting requirements;

(e) Authority to inspect grease producing facilities, enforcement authorities, and whether the Enrollee has sufficient staff to inspect and enforce the FOG ordinance;

(f) An identification of sanitary sewer system sections subject to FOG blockages and establishment of a cleaning maintenance schedule for each section; and

(g) Development and implementation of source control measures for all sources of FOG discharged to the sanitary sewer system for each section identified in (f) above.

9.2    Nature and Extent of FOG Problem

The IRWD FOG Control Program is based on the findings of a FOG characterization study conducted in 2004, other studies with similar agencies, and the requirements of the WDR. The FOG characterization study was documented in the District’s FOG Control Program Manual included in Appendix F. This program integrates various elements into the program to accomplish the goal of preventing SSOs. The key elements of the program include:

- A FOG Control ordinance;
- Sewer line maintenance activities associated with the FOG-related hot spots;
- An inspection process to minimize the discharge of FOG from Food Service Establishments (FSEs);
• An educational outreach program to minimize the discharge of FOG from multi-family housing
  and single-family homes; and,
• Orange County Sanitation District’s (OCSD) Waste Discharge Pretreatment and Source Control
  Program for discharge of FOG from industry.

These elements are accomplished through a variety of program-related activities including:

• FSE inspections
• SSO follow-up and enforcement actions
• Plan review for grease control device requirements for new FSEs
• Residential outreach and education
• Mapping and program database utilization
• Follow-up to collection system staff observations

### 9.3 Legal Authority to Support FOG Source Control Program

The District’s legal authority to prohibit discharges to the system and identify measures to prevent SSOs
and blockages caused by FOG is included in Section 7.11 of the District’s Rules and Regulations for
Water, Sewer, Recycled Water, and Natural Treatment System Service. **Table 9-1** summarizes the legal
authorities related to FOG source control and references the relevant section of the District’s Rules and
Regulations that establishes these authorities.

<table>
<thead>
<tr>
<th><strong>FOG Legal Authority</strong></th>
<th><strong>Section of IRWD’s Rules and Regulations</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOG Discharge Prohibition</td>
<td>7.11.3.1</td>
</tr>
<tr>
<td>Food Service Establishment Prohibitions</td>
<td>7.11.3.2</td>
</tr>
<tr>
<td>Requirement for FOG Wastewater Discharge Permit</td>
<td>7.11.3.3</td>
</tr>
<tr>
<td>Requirements for Implementation of FOG Best Management Practices</td>
<td>7.11.3.4</td>
</tr>
<tr>
<td>Requirement to Install, Operate, and Maintain Grease Removal Equipment</td>
<td>7.11.4</td>
</tr>
<tr>
<td>Grease Interceptor and Grease Trap Requirements</td>
<td>7.11.6.8 &amp; 7.11.6.9</td>
</tr>
<tr>
<td>Authority to Require Monitoring, Reporting, Inspection, and Sampling for FOG Source Control Compliance</td>
<td>7.11.7</td>
</tr>
<tr>
<td>Record-Keeping Requirements</td>
<td>7.11.7.2</td>
</tr>
<tr>
<td>Authority to Perform Inspection and Sampling</td>
<td>7.11.7.4</td>
</tr>
<tr>
<td>Enforcement</td>
<td>7.6 &amp; 7.11.8</td>
</tr>
</tbody>
</table>
9.3.1 **FOG Discharge Prohibition**
Section 7.11.3.1 of the District’s Rules and Regulations prohibits a Food Service Establishment (FSE) from discharging FOG that may accumulate and/or cause or contribute to blockages in either IRWD’s sewer system or sewer system lateral connecting the FSE to IRWD’s sewer system.

9.3.2 **Food Service Establishment Prohibitions**
Section 7.11.3.2 of the District’s Rules and Regulations applies the following prohibition to all FSEs:
1. Installation of food grinders is prohibited. This includes a requirement to remove existing food grinders.
2. Use of additives to emulsify FOG is prohibited.
3. Disposal of waste cooking oil into drainage pipes is prohibited.
4. Discharge of wastewater from dishwashers to any grease removal equipment is prohibited.
5. Discharge of wastewater with temperatures in excess of 140 degrees F to any grease removal equipment is prohibited.
6. Use of any biological additives for grease remediation or as a supplement to grease removal equipment maintenance is prohibited.
7. Discharge of wastes from toilets, urinals, and other fixtures containing fecal materials to sewer lines connected to grease removal equipment is prohibited.
8. Discharges of any waste including FOG and solid material removed from grease removal equipment to the sewer system is prohibited.
9. Diluting discharge as a substitute for treatment is prohibited.

9.3.3 **Authority to Identify Measures to Prevent SSOs and Blockages Caused by FOG**
The District has both incorporated measures to prevent SSOs and blockages caused by FOG into the District’s Rules and Regulations and has the authority to identify additional measures as deemed necessary. The District’s Rules and Regulations require the following measures to prevent SSOs and blockages caused by FOG:
1. Implementation of Best Management Practices to minimize discharge of FOG (Section 7.11.3.4)
2. Requirement to install a grease removal device (Section 7.11.4)
3. Requirement for grease removal equipment maintenance (Section 7.11.6.3)

9.3.4 **Authority to Inspect FSEs and Enforce FOG Regulations**
Section 7.11.7.4 of the District’s Rules and Regulations provides the District with the authority to perform inspection and sampling at FSEs and Section 7.11.8 provides authority to enforce provisions of the Fats, Oils, and Grease Control program.

9.4 **FOG Pretreatment Requirements**

9.4.1 **Requirements to Install Grease Removal Equipment**
Pursuant to Section 7.11.4 of the District’s Rules and Regulations, FSEs are required to install, operate and maintain approved type and adequately sized grease interceptors. The implementation of this FOG regulation includes:
1. All new construction of FSEs after December 30, 2004 are required to install grease interceptors prior to commencing discharges of wastewater to the sewer system as identified through the FSE FOG Plan Review Process.

2. Existing FSEs determined to be the cause or contributor of FOG related blockages or SSOs are required to install grease interceptors within 180 days of identification.

3. Existing FSEs undergoing remodeling or a change in operations or ownership are required to install grease interceptors as identified through the FSE FOG Plan Review Process.

The District’s FOG regulation provides the District with the flexibility to grant a variance from grease interceptor requirements to allow alternative pretreatment technology if the installation of a grease interceptor is not practicable. The District also has the ability to grant a conditional waiver from installation of a grease interceptor if the FSE is determined to have negligible FOG discharge and insignificant impact to the sewer system.

9.4.2 Design Standards for Removal Devices

The District’s FOG regulation requires grease removal equipment sizing and installation to conform to the current edition of the California Plumbing Code and also requires grease removal equipment to be constructed and located in accordance with the requirements and criteria set forth in the FOG Control Program. The District’s Fats, Oils, and Grease (FOG) Control Program Manual, dated December 15, 2004, documents the current approach utilized by the FOG Control Program Manager to size grease interceptors.

The District’s FOG Control Program Manager reviews and approves the sizing and installation of grease removal devices. The design and sizing is based on the current version of the California Plumbing Code Section 1014.3. The FOG Control Program Manager will also consider the potential for large grease interceptors to become septic and may compare the California Plumbing Code sizing against other sizing formulas and use best judgment based on other factors (e.g. FSE cooking equipment, menu, frequency of use of drainage fixture units) to determine the final size of the interceptor.

The FOG Control Program Manual also requires the floor of an interceptor to be shallow enough to allow for proper cleaning and an individual interceptor not to be larger than 3,000 gallons for most installations. FSEs with very large flows may be required to install multiple interceptors. Finally, an FSE calculation of 375 to 750 gallons is required to install a 750 gallon interceptor.

9.4.3 Maintenance Requirements for Grease Removal Equipment

The District’s general FOG Wastewater Discharge Permit requires FSEs to perform grease removal equipment maintenance as frequently as is necessary to ensure FOG and/or solids in the device does not exceed 25 percent of the capacity of the equipment. Typically, the maintenance frequency required is quarterly, yet is no less frequent than once every six months. If FSE inspections identify non-compliance with the District’s FOG regulation, the FOG Control Program Manager may require an FSE to perform more frequent maintenance.

9.4.4 Best Management Practice Requirements

The District’s general FOG Wastewater Discharge Permit requires the implementation of the following Best Management Practices:

- Installation of drain screens
- Segregation and collection of waste cooking oils
- Disposal of food waste into trash or garbage, and not into sinks
• Employee training
• Kitchen signage

9.4.5 Recordkeeping and Reporting Requirements
The District’s general FOG Wastewater Discharge Permit requires FSEs to conform with the following record keeping and notification requirements:

• Record Keeping requirements
  o Logbook of employee training
  o Records of spills and/or cleaning of the lateral or sewer system
  o Logbook of grease control equipment cleaning activities
  o Copies of grease control equipment records or waste hauling manifests
  o Records of sampling data and height monitoring of FOG and solid accumulation in the interceptor

• Notification requirements
  o Notification of a spill
  o Notification regarding planned changes

9.5 FOG Preventive Maintenance
The District employs preventive maintenance as a means to address areas prone to FOG accumulation in the system. The District has identified areas in the sewer system with FOG issues through a combination of maintenance crew knowledge, past grease-related SSOs and stoppages, CCTV inspection data, and the FOG characterization study performed in 2004. Staff maintains a database of all of the FSEs within the District. The District will continue to adjust the sewer cleaning frequency of pipes to address the FOG issue while optimizing the amount of sewer cleaning performed. The District employs the methods outlined in Chapter 4 – Operations and Maintenance Program to optimize its preventive maintenance activities.

The District also has an on-going CCTV inspection program that will continue search for sewer pipes with FOG issues. In addition, sewer cleaning crews record the type and severity of material found during cleaning activities and the District utilizes this information to identify new areas with FOG issues and to adjust sewer cleaning frequencies as described in Section 6.3.

9.6 FOG Source Control
The District performs several types of FSE inspections to ensure FSEs comply with FOG regulations and FOG Control Program requirements. Table 9-2 lists the different types of inspection performed by the District.
Table 9-2: Types of FOG Source Control Inspection Performed by IRWD

<table>
<thead>
<tr>
<th>Inspection Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Inspections</td>
<td>These inspections are conducted to identify and classify each FSEs potential to generate FOG and its potential to discharge the FOG to the sanitary sewer system. If not adequately controlled, this FOG can lead to sewer blockages and, potentially, SSOs. The inspection identifies the type of food, equipment, and kitchen practices that contribute to FOG discharges and the equipment (e.g., grease interceptors, grease traps) that may reduce the discharge of FOG to the sewer. These initial inspections also provide the opportunity to educate the FSEs on the impact of their grease discharges, what they can do to minimize grease discharges, and how the District’s FOG regulations could potential impact them.</td>
</tr>
<tr>
<td>Best Management Practices Inspection</td>
<td>These inspections are conducted to evaluate compliance with the facility’s best management practices requirements.</td>
</tr>
<tr>
<td>Grease Removal Equipment Inspections</td>
<td>These inspections are conducted to evaluate compliance with the facility’s grease removal equipment requirements.</td>
</tr>
<tr>
<td>Compliance Inspections</td>
<td>These inspections are conducted where it is determined by the FOG Control Program Manager that a follow-up inspection is required for a Non-Compliance issue that has been identified in previous BMP, GRE, or FOG source sewer pipe inspections.</td>
</tr>
<tr>
<td>Enforcement Inspections</td>
<td>These inspection are conducted when elevated enforcement of the Permit requirements are required or when the revocation of the FSEs grease interceptor installation Conditional Waiver, Waiver or Variance is required.</td>
</tr>
</tbody>
</table>

The District focuses inspections on FSEs in the vicinity and upstream of areas in the sewer system with known FOG issues and on FSEs identified as having a greater potential to generate FOG and discharge FOG to the sewer system. FSE inspections are conducted approximately once every two years and more frequently for FSEs with greater potential to discharge grease to the sewer system.

9.7 FOG Control Program Enforcement

The District has developed an enforcement response guideline to respond to Non-Compliance issues identified during the inspection process. The District bases the enforcement response on the severity of the non-compliance and the history of non-compliance at the FSE. The enforcement response follows a tiered approach consisting of three tiers: Notice of Non-Compliance, Notice of Violation, and Assessment of Penalties. Table 9-3 lists the levels of enforcement response.
Table 9-3: Levels of FSE Enforcement Response

<table>
<thead>
<tr>
<th>Tier</th>
<th>Enforcement Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1 – Notice of Non-Compliance</td>
<td>A Tier 1 enforcement response is typically utilized for isolated deficiencies that are not serious non-compliance issues. No enforcement action is taken after correction of the deficiency. For example, a single BMP non-compliance finding would result in a Tier 1 enforcement response.</td>
</tr>
<tr>
<td>Tier 2 – Notice of Violation</td>
<td>A Tier 2 enforcement response is triggered due to the severity of non-compliance, an FSE that is non-responsive to previous requirements, or an FSE that remains in non-compliance beyond required timelines. This level of enforcement is triggered by multiple deficiencies identified in an inspection. An example of a serious non-compliance issue would be a deficiency in grease removal equipment maintenance or functionality. Another example is when a grease discharge from an FSE directly identified as the cause of a SSO or blockage event.</td>
</tr>
<tr>
<td>Tier 3 – Assessment of Penalties</td>
<td>Similar to Tier 2, a Tier 3 enforcement response is triggered due to the severity of non-compliance, an FSE that is non-responsive to previous requirements, or an FSE that remains in non-compliance beyond required timelines. A Tier 3 enforcement response is rare and is utilized by the District as a last resort to generate FSE compliance. This level consists of assessment of non-compliance fees; increased assessment of fees; revocation of FSE’s Conditional Waiver requiring installation of a grease interceptor; and the potential loss of the FSE’s right to discharge wastewater to the sewer system.</td>
</tr>
</tbody>
</table>

The District has an appeals process for FSEs to appeal the decisions of the FOG Control Program Manager or General Manager. A hearing is conducted and the FSE will be given the opportunity to present information supporting the FSE’s position. A FSE affected by a Notice of Violation from an inspector or by the action or determination of the FOG Control Program Manager may file a request for a hearing with the General Manager. The General Manager will conduct a hearing with the FSE, review the facts, and make a determination concerning the appeal. An FSE affected by the action or determination of the General Manager may file a request for appeal hearing with the Board of Directors who will review the facts and make a determination.

9.8 FOG Program Staffing

FOG Control Program staffing consists of a combination of District staff and contractor staff. The District employs a part-time FOG Control Program Manager, along with two additional staff members in the Regulatory Compliance Department (Total of 0.75 FTEs). The FOG Control Program Manager and applicable staff are responsible for management of the following activities:

- FOG Control Program implementation, performance monitoring, and reporting
- FSE inspections
- FSE compliance follow-up
- FOG Control Program enforcement
- FOG Control Program education, outreach and customer support
- Grease removal device plan review and processing
- FOG Control Program variance and waiver evaluation and processing

The District utilizes a contractor to perform FSE inspections, issue Notice of Violation letters, and to perform compliance follow-up inspections. District staff perform FOG Control Program enforcement activities if the contractor determines compliance is not achieved at the time of the compliance follow-up inspection. The District also dedicates a portion of the District’s sewer cleaning crews to FOG-related preventive maintenance activities.

### 9.9 FOG Disposal Facilities

Grease hauling companies serving the Irvine area as of March 2018 are shown in Table 9-4, and FOG disposal facilities serving the Irvine area as of March 2018 are shown in the following lists.

**Table 9-4: Grease Hauling Companies Serving Orange County**

<table>
<thead>
<tr>
<th>Company</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameriguard Maintenance Services</td>
<td>(800) 347-7876 x14</td>
</tr>
<tr>
<td>JR Grease Traps and Interceptor Service</td>
<td>(714) 739-4628</td>
</tr>
<tr>
<td>New Leaf Biofuel</td>
<td>(619) 236-8500</td>
</tr>
<tr>
<td>One More Time</td>
<td>(323) 268-2801</td>
</tr>
<tr>
<td>SMC Grease Specialist</td>
<td>(951) 788-6042</td>
</tr>
<tr>
<td>Superior Service Recycling</td>
<td>(714) 502-0240</td>
</tr>
</tbody>
</table>

FOG disposal facilities serving the Irvine area as of March 2018 are shown in **Table 9-5**. The primary grease drop off location is Orange County Sanitation District’s Plant No. 1.
Irvine Ranch Water District SSMP

Chapter 9 FOG Control Program

Table 9-5: Grease Rendering/Drop Off Points for Irvine Area

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone Number</th>
<th>Type of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker Commodities, Inc.</td>
<td>4020 Bandini Blvd Los Angeles, CA</td>
<td>(323) 269-6177 or (800) 427-0696</td>
<td>Grease recycler. Drop off location and grease trap cleaning/hauling.</td>
</tr>
<tr>
<td>Darling International</td>
<td>10441 Stanford Ave Garden Grove, CA</td>
<td>(714) 556-7867</td>
<td>Drop off location and grease trap cleaning/hauling.</td>
</tr>
<tr>
<td>OCC Recycling</td>
<td>2701 Fairview Road Costa Mesa, CA</td>
<td>(714) 432-5131</td>
<td>Used cooking oil only</td>
</tr>
<tr>
<td>One More Time</td>
<td>4144 Bandini Blvd Los Angeles, CA</td>
<td>(323) 268-2801</td>
<td>Used cooking oil only</td>
</tr>
<tr>
<td>Orange County Sanitation District, Plant No. 1</td>
<td>10844 Ellis Avenue, Fountain Valley, CA 92708</td>
<td>(714) 593-7428</td>
<td>Primary grease drop off point for grease haulers serving IRWD.</td>
</tr>
<tr>
<td>Southwest Processors</td>
<td>4120 Bandini Blvd Los Angeles, CA</td>
<td>(800) 900-3366</td>
<td>Grease recycler. Drop off location and grease trap cleaning/hauling.</td>
</tr>
</tbody>
</table>

The District will update the list bi-annually based on the findings of the biennial SSMP Audit. The number and close proximity of the disposal sites is adequate to handle liquid wastes expected to be removed from current and future grease removal equipment within the District.

9.10 FOG Public Education Outreach

The District utilizes education as the primary method for controlling the discharge of FOG to the sewer system from multi-family housing and single-family homes. The District provides educational information concerning FOG in the District’s Quarterly Newsletter at least once annually. In addition, the District mails FOG education brochures with utility bills on an annual basis to educate District customers.

The District conducts more frequent mailing of FOG brochures for areas identified as potential upstream sources of FOG in the sewer system. Additionally, the District provides FOG brochures and educational material to multi-family housing for posting in common areas.

9.11 Industrial Discharger FOG Control

The District utilizes the Orange County Sanitation District’s (OCSD) source control program to regulate wastewater discharges from Industrial users into the District’s sewer collection system. The District will coordinate with OCSD for regulation and enforcement of industrial dischargers for any FOG related discharges identified by the District.
Chapter 10  System Evaluation and Capacity Assurance Plan

10.1 Regulatory Requirements

The District shall prepare and implement a capital improvement plan (CIP) that will provide hydraulic capacity of key sewer system elements for dry weather peak flow conditions, as well as the appropriate design storm or wet weather event. At a minimum, the plan must include:

(a) **Evaluation:** Actions needed to evaluate those portions of the sanitary sewer system that are experiencing or contributing to an SSO discharge caused by hydraulic deficiency. The evaluation must provide estimates of peak flows (including flows from SSOs that escape from the system) associated with conditions similar to those causing overflow events, estimates of the capacity of key system components, hydraulic deficiencies (including components of the system with limiting capacity) and the major sources that contribute to the peak flows associated with overflow events;

(b) **Design Criteria:** Where design criteria do not exist or are deficient, undertake the evaluation identified in (a) above to establish appropriate design criteria; and

(c) **Capacity Enhancement Measures:** The steps needed to establish a short- and long-term CIP to address identified hydraulic deficiencies, including prioritization, alternatives analysis, and schedules. The CIP may include increases in pipe size, I/I reduction programs, increases and redundancy in pumping capacity, and storage facilities. The capital improvement plan shall include an implementation schedule and shall identify sources of funding.

(d) **Schedule:** The District shall develop a schedule of completion dates for all portions of the capital improvement program developed in (a) - (c) above. This schedule shall be reviewed and updated consistent with the SSMP review and update requirements in Section D. 14.

10.2 Background

The District performs capacity assurance planning for both the trunk sewers as well as for sewer pipelines within smaller planning areas. The District performed capacity assurance planning for the trunk sewers in March 2017. The results were documented in the 2017 Sewer Collection System Master Plan included in Appendix G. The District also prepares water, sewer, and reclaimed water facility planning studies, also known as a Sub-Area Master Plans (SAMP), on areas after a developer has generated a specific plan of development with a planning area. An example of a SAMP is included in Appendix G. The District has not experienced any capacity-related sewer overflows.

10.3 Capacity Evaluation

One of the primary objectives of the Sewer Collection System Master Plan, developed by the District and AKM Consulting Engineers in March 2017, was to determine the available capacity of the collection system and to identify any deficiencies resulting from those system capacities. To accomplish this objective, the District created a hydraulic model of the collection system. The hydraulic model is composed of both the physical characteristics of the system and the flows the District estimates will be conveyed by the system. Analyses were performed to determine the water demand and sewage flow generation factors for representative land uses throughout the District’s service area. This analysis was documented in a Water Demand and Flow Generation Factor Study, which includes the procedures used to calculate water demands and sewage flow generation factors as well as the results of those analyses.

Hourly variations in wastewater flows are an important part of determining the hydraulic capacity of the sewer collection system. The District’s Flow Measurement Program characterized the flow volumes per
land use and this information was used to define the hourly flow variations for residential and non-residential land use types.

Under the first phase of the flow measurement program, a number of flow measurement devices (monitors) were installed throughout the collection system. These devices were positioned to measure flow from generally homogenous land use areas. Each device sampled the flow rate within the sewer system on a five-minute interval. For each measurement site, hourly average flow rates were used to define the diurnal pattern of the actual flow in the system. Hourly peak flow factors were calculated to allow comparison of the flow measurement results between drainage basins with different flow volumes. Hourly peak flow factors are calculated by dividing the average hourly flow rate by the average daily flow rate. Figure 10-1 and Figure 10-2 show the observed diurnal curves for residential and non-residential flows. These flow patterns are documented in Section 4 of the Sewer Collection System Master Plan.

**Figure 10-1: Residential Diurnal Curve**

---

4 Figure 4-1, Sewer Collection System Master Plan, March 2017, AKM
In June 2012, the District’s Sewer System Management Plan Program Audit included an audit finding indicating the District’s current planning criteria of accounting for inflow/infiltration (I/I) using conservative depth over diameter (d/D) ratios may be inadequate for areas with high levels of I/I. In November 2012, the District performed a preliminary I/I study from data collected at selected lift stations between January 1, 2010 and March 31, 2012. The study concluded that normalized volumetric RDII responses from the evaluated tributary basins are considered moderate. Furthermore, RDII peak factors associated with the Canada, Coastal Ridge and Coyote lift stations suggest that peak flows leading to the wet wells of those stations were likely significant during the two large, system-stressing storms evaluated. Based on the results of this preliminary evaluation, the District plans on performing additional analysis during the next Sewer Master Plan project to determine if a change to the planning criteria for accounting for I/I is needed in areas with high levels of I/I.

### 10.4 Design and Performance Criteria

Section 4 of the Sewer Collection System Master Plan documents the District’s design and performance criteria for gravity pipelines including the allowable sewer main slope, peaking factors, and minimum depth. Section 4 also includes performance criteria for force mains, sewer pump stations, and siphons.

#### 10.4.1 Gravity Mains

The District requires design flows for residential sewer mains to be calculated based on the flow generation factors presented in Table 4-4 of the Sewer Collection System Master Plan according to the most appropriate land use category. The District encompasses a variety of land use types: residential and non-residential. The District requires Residential and Commercial/Industrial flow design criteria to be calculated by the design engineer based on projected generation rates for the specific commercial or industrial development. Peak dry weather design flows for sewer mains are to be designed to maintain a

---

5 Figure 4-2, Sewer Collection System Master Plan, March 2017, AKM
specific depth (d) to diameter (D) ratio, based on the selected diameter of the pipeline as shown in Table 10-1.

Table 10-1: d/D Performance Criteria for Gravity Sewer Pipes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Peak Dry Weather Flow d/D</th>
<th>Diameter &lt; 15”</th>
<th>Diameter = 15”</th>
<th>Diameter &gt; 15”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority 1</td>
<td>&gt; 82%</td>
<td>&gt; 82%</td>
<td>&gt; 82%</td>
<td></td>
</tr>
<tr>
<td>Priority 2</td>
<td>75% - 82%</td>
<td>75% - 82%</td>
<td>75% - 82%</td>
<td></td>
</tr>
<tr>
<td>Priority 3</td>
<td>67% - 75%</td>
<td>67% - 75%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Priority 4</td>
<td>50% - 67%</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Design Requirement</td>
<td>≤50%</td>
<td>≤67%</td>
<td>≤75%</td>
<td></td>
</tr>
</tbody>
</table>

Maintenance of specific d/D ratios under peak dry weather flow conditions provides sufficient pipeline capacity to accommodate wet weather flow, including infiltration, inflow and other storm related water, over and above the actual wastewater. This additional headspace also provides a margin of safety for variations in flow estimation. The overall intent is to provide a factor of safety within the pipeline for wet weather and other unexpected flows.

Design criteria establish a means of selecting a pipeline size and vertical slope that provides the required capacity and flushing velocity for projected flows and the available head space above the water surface for potential unexpected peak flows above normal projected conditions. Such instances of peak flows exceeding design conditions may occur during rain events where any number of potential avenues of water conveyance may allow rain water into the sewer collection system. Groundwater is another potential source of defect flow that may contribute to overall Inflow and Infiltration (I&I) that can occur during the life span of a pipeline segment. Excessive I&I within a collection system will increase the risk of sanitary sewer overflows.

The design criteria for gravity pipelines provides for an industry standard margin of safety from sanitary sewer overflows by dedicating the remaining head space (air space above the water level) for unexpected I&I situations. Once in operation for a long period of time, if a pipeline operates with a peak flow higher than the design criteria, it is not necessarily a trigger for upsizing the pipeline segment capacity. This is particularly relevant for areas that have already reached their ultimate build-out condition and do not expect any further increase in flows.

The District’s Sewer Collection System Master Plan included gravity pipeline performance criteria to provide a means to prioritize existing pipeline segments experiencing flows above design standards. As shown in Table 10-1 above, a ranking system of one to four was created for different pipe size categories.

---

6 Table 4-6, Sewer Collection System Master Plan, March 2017, AKM
and d/D ratio ranges to evaluate the performance of pipelines and focus on segments presenting the highest risk of flowing at full capacity.

Sewer mains are required to be designed and constructed to provide mean velocities as described in Section 4-2 of the District’s Procedural Guidelines and General Design Requirements at the design depth defined in Table 10-1 above. Table 4-7 of the Sewer Collection System Master Plan documents the design criteria for allowable sewer main slope.

The adequacy of a sewer collection system is based upon its ability to convey the peak flows. District sewer mains are required to be designed and sized using peak flow conditions, determined by multiplying average flow conditions by a peaking factor. The capacity of the sewer collection system was validated by developing a calibrated hydraulic modeling and verifying with field observations. The methodology described below provides a representative understanding of the hydraulic modeling analysis supports the SSMP: The average base loads were established to match the flow monitoring and SCADA data at various lift stations, treatment plants, and 65 temporary sewer flow monitors. The average flows routing the tributary areas were loaded in the hydraulic model for over a 24-hour period. The instantaneous model flows are generated from the average flow conditions and the corresponding hourly diurnal patterns. Section 6-9 of 2016 Sewer Collection System Hydraulic Model Manual included the diurnal patterns for residential, commercial, and specific customers developed for the peak dry weather scenario simulations. Once the model was calibrated, the system was analyzed and verified for adequate capacity.

Additionally, developments containing more than 400 dwelling units are required to provide the District with a Sub-Area Master Plan (SAMP). The SAMP includes an analysis of the proposed sewer system using a computerized hydraulic model, a complete description of the facilities to be constructed, maps, and computations providing the design criteria meeting the requirements of the Sewer System Guidelines. The Sewer Collection System Master Plan incorporates the information provided by SAMPs where appropriate and available.

10.4.2 Force Mains
Section 4-10 of the IRWD Procedural Guidelines and General Design Requirements documents the design and performance criteria for force mains.

10.4.3 Sewer Pump Stations
Pump stations design and performance criteria included in the Sewer Collection System Master Plan conforms to Section 4-13 of the District’s Procedural Guidelines and General Design Requirements.

10.4.4 Siphons
Section 4-8 of the Sewer Collection System Master Plan documents performance criteria utilized in evaluating the existing siphons. Final criteria for ultimate upgrades will be at the discretion of IRWD and addressed during the design phase of the project. Siphons are only used when specifically approved by the District Engineer, and after all other design options have been investigated.

10.5 Reliability and Redundancy
The District performed a system reliability and redundancy analysis documented in Section 7 of Sewer Collection System Master Plan. As part of the Sewer Collection System Master Plan update in 2016, a Criticality based Reliability and Redundancy analysis of the gravity system pipes, siphon, force mains, and

---

lift stations was conducted. The analysis utilized the existing closed circuit television (CCTV) inspection data, the developed hydraulic model data, as well as other elements deemed of importance to the analysis.

InfoMaster, an ArcGIS based asset integrity management and capital planning software package, was utilized to conduct the analysis. It is a tool that assists in characterizing the likelihood and consequence of failure for individual pipes in the network. IRWD’s CCTV inspection data and hydraulic analysis data were used by the InfoMaster software to assist in the analysis. InfoMaster relates the combination of both Likelihood of Failure and Consequence of Failure to risk. Risk takes into account the asset’s physical condition, as well as the impact that its failure would have on system performance and stakeholders.

10.5.1 Gravity Pipe Risk Analysis
The resulting gravity system risk profile and recommended action items are included in Section 7-2 of Sewer Collection System Master Plan. A decision tree shown in Figure 7-4 of Sewer Collection System Master Plan is used to determine the action items related to each gravity pipe.

10.5.2 Siphon Risk Analysis
The siphon risk analysis was conducted along with the gravity main pipes. Because of the fact that siphons for the most part flow under pressure, and have a d/D greater than 0.75, all siphons are classified in the “Extreme Risk” or “High Risk” category. The list of siphons and their risk profile is shown in Table 7-2 of Sewer Collection System Master Plan.

10.5.3 Force Main Risk Analysis
In the Force Main Risk Analysis, the overall Likelihood of Failure and Consequence of Failure scores are calculated as a weighted average of all individual Likelihood of Failure and Consequence of Failure scores. Each of the Likelihood of Failure and Consequence of Failure elements are assigned different weighting factors depending on the goals and priorities of IRWD. The detail of risk analysis for force main is included in Section 7-5 of Sewer Collection System Master Plan.

10.5.4 Lift Station Risk Analysis
The weighted Scores for all Likelihood of Failure and Consequence of Failure Elements for Lift Station are shown in Table 7-5 of Sewer Collection System Master Plan. The Condition Grade is weighted heavily because it is based on actual observations made during the field visits of each lift station. Proximity to Major Waterways and Rate of Flow are weighted heavily because in the event of a spill, these lift stations would have the most impact on the community and the environment. Based on the Likelihood of Failure and Consequence of Failure scores and weightings, the resulting Lift Station Risk Profile is shown in Table 7-6 of Sewer Collection System Master Plan.

10.6 Capacity Enhancement, Reliability, and Redundancy Measures
Table 10-1 documents the priority of the pipe segments experiencing flows above the design standard d/D. Using the Performance Criteria, Plate 4 of Sewer Collection System Master Plan developed recommended action items from the risk analysis conducted on gravity pipes. IRWD conducts on-going maintenance and rehabilitation efforts for capacity enhancement, reliability, and redundancy measures. IRWD performs CCTV inspections on the sewer collection system and takes necessary steps to maintain and rehabilitate the gravity and force main sewer pipe. Since 2014, IRWD rehabilitated approximately 7,500 LF of 8-inch, 10-inch, 12-inch, and 15-inch sewer pipe with Cure-in-Place (CIP) Lining. In addition to CIP pipe lining, sewer pipe rehabilitation projects involve sewer line cleaning, additional CCTV inspections, mechanical root removal process, Calcium removal, and spot repairs.
Tables 7-2 and 7-4 of Sewer Collection System Master Plan provided the risk profile of Siphons and Lift Stations. In addition to the scored based risk assessment, IRWD performed condition assessment of the facilities to prioritize the rehabilitation projects. The IRWD goal is to rehabilitate one Siphon and one Lift Station annually to meet the capacity enhancement and improve reliability and redundancy measures.

IRWD’s capital budget included several on-going capacity, reliability, and redundancy projects including:

- **Michelson Force Main Rehabilitation Project** – This project will install CIP Pipe Lining on approximately 3,400 LF of force main sewer pipe.
- **Newport Coast Lift Station Rehabilitation Project** – This project rehabilitates CIP Pipe Lining on approximately 3,000 LF of force main sewer pipe and installs a new portion of epoxy-lined Ductile Iron Pipe that connects the rehabilitated force main to the lift station drywell.
- **Sewer Siphon Rehabilitation** – This project uses the results from the Criticality analysis and implements the identified rehabilitation.
- **Sewer System Calcium Removal** – As discussed earlier, the routine sewer line cleaning and inspections identify areas for calcium removal, this project implements this maintenance task.
- **Sewer Line Repairs** – This project is an on-going annual project put in place for, previously unidentified, sewer repairs.
Chapter 11 Monitoring, Measurement, and Program Modifications

This section of the SSMP presents the District’s approach to Monitoring, Measurement, and Program Modifications.

11.1 Regulatory Requirements

The requirements for the Monitoring, Measurement, and Program Modifications element of the SSMP are that the District shall:

(a) Maintain relevant information that can be used to establish and prioritize appropriate SSMP activities;

(b) Monitor the implementation and, where appropriate, measure the effectiveness of each element of the SSMP;

(c) Assess the success of the preventative maintenance program;

(d) Update program elements, as appropriate, based on monitoring or performance evaluations; and

(e) Identify and illustrate SSO trends, including: frequency, location, and volume.

11.2 Performance Measures

The District utilizes data captured in the District’s geographical information system (GIS), computerized maintenance management system (CMMS), and the State Water Resources Control Board’s California Integrated Water Quality System (CIWQS) SSO database to monitor and measure the performance of the SSMP and SSMP implementation. The District monitors sewer overflow performance to accomplish the following:

- Establish and prioritize appropriate SSMP activities
- Monitor the implementation and effectiveness of the SSMP
- Assess the success of the preventative maintenance program
- Identify and illustrate SSO trends including frequency, volume, and location

The District’s computerized maintenance management system contains information on the effectiveness of preventative maintenance activities and allows for historical review of pipeline work order history to adjust maintenance and repair priorities. The District also performs a failure cause analysis of all individual sewer overflow events and, based on this review, identifies corrective actions to SSMP program elements as appropriate.

11.3 Performance Monitoring and Program Changes

The District will evaluate the performance of its wastewater collection system at least annually using the performance measures identified in Table 11-1. The District will update the data and analysis of performance measures at the time of the evaluation. The District may use other performance measures in its evaluation.
Table 11-1: Performance Metrics for Monitoring and Measurement

<table>
<thead>
<tr>
<th>Type</th>
<th>Performance Measure</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Statistics</td>
<td>Total miles of gravity sewer</td>
<td>GIS</td>
</tr>
<tr>
<td></td>
<td>Total miles of pressure sewer</td>
<td>GIS</td>
</tr>
<tr>
<td></td>
<td>Total number of sewage pumping stations</td>
<td>GIS</td>
</tr>
<tr>
<td>Measures Based on SSO Number</td>
<td>Total number and percentage of SSOs by Category</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Number and percentage of dry weather versus wet weather SSOs</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Number of SSOs by cause:</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Number of SSOs per 100 miles of sewer per year</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Number of locations with more than one SSO in the past year</td>
<td>CIWQS</td>
</tr>
<tr>
<td>Measures Based on SSO Volume</td>
<td>Volume of SSOs per 100 miles per Year</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Number and percentage of SSOs by Size Class</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Total volume of SSOs</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Mean and median SSO volume</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Total SSO volume recovered and percentage of overall total SSO volume</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Net volume of SSOs (total minus recovered) and percentage of overall total SSO volume</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Total volume reaching storm drainage channel and not recovered or reaching surface</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>waters and percentage of overall total SSO volume</td>
<td></td>
</tr>
<tr>
<td>SSO Response Time</td>
<td>Average response time during business hours</td>
<td>CIWQS</td>
</tr>
<tr>
<td></td>
<td>Average response time outside of business hours</td>
<td>CIWQS</td>
</tr>
<tr>
<td>Maintenance Program</td>
<td>Number of blockages in the past year by cause</td>
<td>CMMS</td>
</tr>
<tr>
<td></td>
<td>Planned cleaning (LF)</td>
<td>CMMS</td>
</tr>
<tr>
<td></td>
<td>Planned cleaning versus goal (LF) – Gap analysis</td>
<td>CMMS</td>
</tr>
<tr>
<td></td>
<td>Planned CCTV inspection (LF)</td>
<td>CMMS</td>
</tr>
<tr>
<td></td>
<td>Planned CCTV inspection versus goal (LF) – Gap analysis</td>
<td>CMMS</td>
</tr>
</tbody>
</table>

11.4 SSMP Updates

The District will update its SSMP at least every five years and will complete the next update on or before August of 2023. The District will determine the need to update its SSMP prior to a 5-year update based on the results of the biennial audit and the performance of its sanitary sewer system.

District staff will seek approval from the District Board for any significant changes to the SSMP. The authority for approval of minor changes such as employee names, contact information, or minor procedural changes is delegated to the Director of Recycling Operations. Copies of the current SSMP document will be available to all interested parties on the District’s website.
Chapter 12  SSMP Program Audits

This section of the SSMP presents the process the District will follow to audit its SSMP and related programs.

12.1  Regulatory Requirements

As part of the SSMP, IRWD shall conduct periodic internal audits, appropriate to the size of the system and the number of SSOs. At a minimum, these audits must occur every two years and a report must be prepared and kept on file. This audit shall focus on evaluating the effectiveness of the SSMP and the District’s compliance with the SSMP requirements identified in this subsection (D.13 of the WDR), including identification of any deficiencies in the SSMP and steps to correct them.

12.2  SSMP Audits

The District will audit its SSMP every two years. Table 12-1 shows the schedule for future SSMP Program Audits. The SSMP Program Audit will determine whether the SSMP meets the current requirements of the WDR, whether the SSMP reflects the District’s current practices, and whether the District is following the SSMP. The audit will be conducted by a team consisting of District staff. At the District’s discretion, a consultant may be retained to perform all or part of the audit process in cooperation with District staff. The results of the audit will be included in the SSMP Audit Report.

<table>
<thead>
<tr>
<th>Table 12-1: SSMP Program Audit Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMP Program Audit Schedule</td>
</tr>
<tr>
<td>May 2, 2020</td>
</tr>
</tbody>
</table>

The SSMP Audit Report will focus on the effectiveness of the SSMP program, compliance with the WDR requirements, and identification of any deficiencies in the SSMP. The SSMP Audit Report will identify revisions that may be needed for a more effective program. Information collected as part of Chapter 11 – Monitoring, Measurement, and Program Modifications will be used in preparing the audit. The District will retain copies of the bi-annual Audit Reports for five years and will be available to the State Board upon request. A summary of the results from the District’s 2016 SSMP Program Audit is included in Appendix H.
Chapter 13 Communication Program

This section of the SSMP is intended to outline the process involved in communicating with interested members of the public regarding the development, implementation, and performance of this plan.

13.1 Regulatory Requirements for the Communication Program

The Enrollee shall communicate on a regular basis with the public on the development, implementation, and performance of its SSMP. The communication system shall provide the public the opportunity to provide input to the Enrollee as the program is developed and implemented.

The Enrollee shall also create a plan of communication with systems that are tributary and/or satellite to the Enrollee’s sanitary sewer system.

13.2 Communication with Public

The District communicates on a regular basis with the public on the development, implementation, and performance of its SSMP. The communication system provides the public the opportunity to provide input to the District’s SSMP and SSMP implementation. This communication occurs in the form of notices in the newsletter and on the District website. Public comments are accepted at all monthly District Board meetings and the Districts will evaluate public input, when provided, and will address as appropriate.

The District’s Board of Directors is presented a report of sewer spills volume and location as a part of the quarterly dashboard report of strategic measures during Board meetings. This information is available to the public in the monthly agenda and Board packets available on the internet. These quarterly sewer overflow performance reports are the primary means for the District to communicate the on-going performance of the SSMP and SSMP implementation to the public. District Board Meetings are open to the public with agendas posted on the District website prior to the meeting.

Table 13-1 lists the various strategies the District employs to communicate with the public on the development, implementation, and performance of the District’s SSMP.
Table 13-1: Strategies for Communication with Public on SSMP Development, Implementation and Performance

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Strategy</th>
<th>Description</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMP Development</td>
<td>Website</td>
<td>SSMP presented to the Board for approval. The document is available for public review prior to the Board meeting. The public can provide input and comments to the Board at any Board meeting.</td>
<td>During and after development of SSMP update</td>
</tr>
<tr>
<td>SSMP Implementation</td>
<td>Website</td>
<td>District has a webpage dedicated to the collection system. The page includes a link to the District’s SSMP and contact information for who to call with any questions regarding SSMP content, implementation, and performance.</td>
<td>Always available on District webpage</td>
</tr>
<tr>
<td>SSO Emergency Response</td>
<td>Website</td>
<td>IRWD website has Emergency and CodeRED button on homepage. Emergency and CodeRED webpage has contact information for who to call in case of an emergency.</td>
<td>Always available on District webpage</td>
</tr>
<tr>
<td>Fats, Oils, and Grease Best Practices</td>
<td>Website</td>
<td>IRWD website has a webpage providing the public with information relating to FOG control best practices.</td>
<td>Always available on District webpage</td>
</tr>
<tr>
<td>SSMP Performance</td>
<td>Board Meeting</td>
<td>Monthly report on sewer overflow performance included with Strategic Measures.</td>
<td>Monthly at Board Meetings</td>
</tr>
<tr>
<td>SSMP Performance</td>
<td>CIWQS Website</td>
<td>Sewer overflow performance information is available to the public on the State Water Resources Control Board (SWRCB) California Integrated Water Quality System (CIWQS). Go to <a href="https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/PublicReportSSOServlet?reportAction=criteria&amp;reportId=sso_main">https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/PublicReportSSOServlet?reportAction=criteria&amp;reportId=sso_main</a>. Type in “Irvine Ranch” in the “Enter a sanitary sewer agency name” field. Click on “Generate Report” button.</td>
<td>Always available on internet</td>
</tr>
</tbody>
</table>
13.3 Communication with Tributary and/or Satellite Systems

The District’s wastewater collection system serves the City of Irvine, Lake Forest, as well as parts of Tustin, Newport Beach, Foothill Ranch, Costa Mesa, and unincorporated areas of Orange County. These areas are within the District service area and are not considered tributary or satellite system.

IRWD does accept a small quantity of wastewater into its sewer system from the University of California, Irvine (UCI), which is located within IRWD’s service boundaries. UCI has provided the District with a copy of the SSMP for the UCI sewer system. The District has communicated to UCI the commitment to provide mutual assistance in the event of a sewer overflow, if UCI requests support. The IRWD sewer system has adequate capacity to convey the minor flows it accepts from UCI. IRWD does not currently have a formal agreement with UCI regarding discharge of wastewater into the District’s collection system.

There is a small amount of wastewater generated in the City of Newport Beach and Irvine that is collected by trunk sewers owned, operated, and maintained by the IRWD, then discharged into sewers owned and maintained by the Orange County Sanitation District (OCSD). The District communicates with the City of Newport Beach and OCSD through quarterly Orange County Waste Discharge Requirements Steering Committee and general meetings.